

ENDURE

European Network for Durable Exploitation of crop protection strategies

Project number: 031499

Network of Excellence Sixth Framework Programme

Thematic Priority 5 FOOD and Quality and Safety

Deliverable DR2.16

Report on RA2.6a – Designing Innovative crop protection strategies in arable rotations- Winter Crops Based Cropping Systems (WCCS):

Design of AS and IS1 cropping systems

Due date of deliverable: M35

Actual submission date: M42

Start date of the project: 1 January, 2007 **Duration**: 48 months

Organisation name of lead contractor: Aarhus University (AU)

Revision

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006						
Dissemination Level						
PU Public (Paper, Leaflets, Knowledge Compilation)	X					
PP Restricted to other programme participants (including the Commission Services) (Final Report)						
RE Restricted to a group specified by the consortium (including the Commission Services)						
CO Confidential, only for members of the consortium (including the Commission Services)						

Table of contents

Glossary	3
Summary	4
Introduction	6
State of the art	7
Interactions with other ENDURE activities	8
Analyses on typical crop rotation compositions in France, the UK and Denmark	9
Treatment Frequency Indices for each country	.24
DEXiPM and links to RA2.6a	.26
Proposals of AS and IS1 systems for each country	.27
Denmark	.28
UK	.36
France	.49
Discussion	.62
Conclusions	.64
References	.64
Appendix A: AS and IS1 systems for each country	.66
Appendix B: List of major pests in winter wheat, winter barley and win oilseed rape for each country1	
Appendix C: The impact of agronomic practices on weeds, diseases and invertebrate pests1	177

Glossary

Definitions in the context of this report

Pests

Herbivorous arthropods, fungal diseases and weeds that have the potential to cause economically significant damage to the maize crop.

Pesticides

Chemical and non chemical plant protection products applied in the form of soil granules, onplant microgranules, seed treatments or spray formulations in maize growing against arthropod pest nsecticides, acaricides), fungal diseases (fungicides), and weeds (herbicides).

Alternative pest control methods

Pest control methods not relying on chemical pesticides.

Integrated pest management (IPM)

Concept of using different techniques in combination to control pests efficiently, with least adverse effects on the environment and most specificity to the particular pest. A set of decision rules is used to identify the need for and selection of appropriate control actions that provide economic benefits to growers and society while keeping chemical control of pests to a minimum.

Treatment Frequency Index (TFI)

An index of the intensity of pesticide use, calculated as the total number of full doses of a pesticide applied to a given crop in a given amount of time (usually a growing season). The index can also be calculated as the average annual TFI for a rotation.

Summary

Winter crops constitute the principal component of most crop rotations in arable cropping in Northern Europe. Winter wheat, winter barley and winter oil seed rape are the primary crops grown among the winter crops. These crops are preferred because of a higher yield potential than similar spring grown crops and a good adaption of winter crops to the climate and soils prevailing in Northern Europe. While the profitability of growing these crops is larger compared with spring sown crops, the input from pesticides needed is higher, adversely affecting the environment. Previous case studies in ENDURE have predominately been looking at tactics and strategies for pesticide reductions in single crops only. This case study is taking advantage of the knowledge amalgamated in previous ENDURE activities and brings it into a cropping system context. The aim is to change and redesign current winter crops based cropping systems in order to reduce the necessity of pesticides. The whole activity is exploring practical scenarios for reducing pesticides taking into account local/country-related priorities. The case study includes redesigned cropping systems for the UK, Denmark and middle and northern areas of France while more basic information is presented for Germany also. Current winter crops based cropping systems in the three countries have rather large differences in terms of pesticide use with France and the UK having treatment frequent indexes (TFI) 3-4 times higher than in Denmark. However, the case study has revealed considerable scope for reductions in pesticide use by employing agronomic methods and technologies that are already available to farmers, or are close to being so, but this scope varies greatly between countries depending upon how much pesticide usage has already been reduced and upon the local socio-economic and pedo-climatic context. The approach suggested by the UK and Denmark relies on a mix of preventative and curative pest management actions such as modifying the existing systems, reducing pesticide use through the introduction of both low-tech practices (e.g. optimized/adjusted dosages, sowing densities and dates, cultivars, crop sequences, tillage etc.) and hi-tech practices (e.g. GPS-guided applications, pesticide targeting, decision support systems). France, however, emphasizes preventative measures, re-designing the whole cropping system to limit the risk of pest attacks, meaning that innovations developed from a cropping system with no pesticide (e.g. organic CS) relying on all possible low technology means to control pests, pesticides only being added when alternative practices fail. The estimated maximum TFI reductions achieved by the most far-reaching proposals for redesigned systems in Denmark, France and the UK were 37%, 94% and 56%, respectively.

Teams involved

	Institute	Country
ACTA	Association de coordination technique agricole	France
INRA	L'Institute National de la Recherche Agronomique	France
RRES	Rothamsted Research	UK
AGROS	Agroscope Research Station ART	Switzerland
AU	University of Aarhus	Denmark
DAAS	Danish Agricultural Advisory Service	Denmark
JKI	Julius Kühn-Institut (former BBA)	Germany

The RA2.6a case study has been running for 13 months in which 3 meetings have been held.

Geographical areas covered

Totally 3 countries and 5 regions are included in this study:

• The UK: arable area of England

• Denmark: whole country

• France: three regions: Bassin Parisien, Poitou Charentes, Bourgogne

Degree of validation and operability of findings

Data, information and experts' knowledge and experience were gathered and discussed over 3 workshops. Subsequently, all the information collected has been formulated into cropping systems designed for a reduced reliance on pesticides. The work has been discussed in collaboration with invited extention services with great knowledge about cropping in practice. The report is approved by all involved teams. It has also been sent to Endure on M39 for approval.

The AS systems are all designed to be ready for implementation in practice or to serve as a source for inspiration of similar cropping systems aiming at reducing pesticide input. The IS1 systems also contain information of practical value but its functionality and applicability in practical cropping has some uncertainties owing to the suggestion of still immature technologies.

The work on developing AS and IS1 systems are planned to evolve into a scientific paper or conference paper depending on the support from economic analyses on the feasibility of the proposals. Leaflets containing the major elements of the AS systems are planned for DK, the UK, FR, audience: extension services. The work is also going to be presented at national and international conferences.

Introduction

The case study on Arable Crop System studies (RA2.6) was initiated in January 2008. This case study was formulated as a consequence of previous case studies predominately looking at single crops only. There was a need to take advantage of the knowledge amalgamated in other ENDURE activities and bring it into a cropping system context. The question arose whether current cropping systems could be changed or redesigned to reduce the necessity of pesticides. Thus not only the crop protection actions taken in the single crop but also the whole cropping systems as such should be scrutinized to identify where and when relevant savings in pesticide input could be achieved. The whole activity is exploring practical scenarios for reducing pesticides taking into account local/country related priorities.

The two first meetings in RA2.6 were used to identify the cropping systems of relevance for European arable cropping. The expertise and data available within the frame of ENDURE, and how this might contribute to the RA2.6 case study, were analyzed and discussed. These meetings resulted in three sub-activities as relevant forums for the continuation of RA2.6, because important European crop rotations, mainly composing of cereals, were seen to differ considerably between Northern Europe and Central/Southern Europe. Cropping systems having a high proportion of winter crops, notably winter wheat, winter barley, and winter oil seed rape, are typical for Northern Europe. It was decided to deal with such cropping systems in sub-activity RA2.6a.

RA2.6a began in mid-July 2008 and a core group consisting of INRA, RRES, JKI and AU was established. Each core group member represented the country and regions within the country in which winter crops based cropping systems (WCCS) would have particular relevance: Middle and Northern France, the UK, Middle and Northern Germany and Denmark. In addition, other institutions working with extension services, having close contacts to the producers, have supported the work in RA2.6a, notably DAAS (Denmark), ACTA, CETIOM (France) and two UK extension services participating in one of the planning meetings (Velcourt, subcontracted to ENDURE SA4.5 and TAG [The Arable Group] on an *ad hoc* basis).

The work in RA2.6a has been divided into two overall sections of which this report is dealing with the first section. In the first section, the work has focussed on the design of alternative system WCCS (AS) and level 1 innovative system WCCS (IS1). AS are defined as systems that include current information from organic and integrated pest management systems. Several measures and methods, such as tillage practices, rotational effects, crop residue management, mechanical weeding, crop variety features, reduced pesticide doses, etc. have been reviewed, both solely and in combinations. Therefore, the AS proposed are based on a solid foundation. IS1 are also based on existing knowledge and technologies but information about their functionality and likely positive effects in terms of reducing pesticide input, when included in a cropping system context, is lacking or very slight.

Expertise internal and external to ENDURE was identified for listing main pest problems according to their importance in current crop protection systems in WCCS. These major pests are presented in Appendix B, and AS and IS1 are mainly addressing these problems. RA2.6a has also gathered information about the effects of agronomic methods on pests, presented in Appendix C.

Existing knowledge of applicable methods to include in crop protection strategies for WCCR were reviewed in the first section of RA2.6a with a special focus on preventive, cultural and non-chemical methods, reduced pesticide doses, variety features, etc. The review and discussions have resulted in the formulation of AS and IS1 systems, which are presented in details in Appendix A. A first attempt to assess the systems according to applicability, economy, environmental impact, landscape perception, social impact, etc. was carried out with the help from the DEXiPM assessment tool from RA2.4/3.1 and that is currently under development. The systems were also assessed according to estimates of the reductions in pesticide usage that they achieved. Pesticide usage was estimated as the average annual Treatment Frequency Index (TFI) over the rotation.

This report summarizes the work done to design the AS and IS1 systems for WCCS in Denmark, France and the UK.

State of the art

Overwintering crops constitute the principal component of most crop rotations in arable cropping in Northern Europe. Winter wheat, winter barley and winter oil seed rape are the primary crops grown among the winter crops. Pig producers and stockless arable growers have a high proportion of over-wintering crops, especially winter wheat, in their crop compositions. Dairy farmers and beef producers have other needs where fodder crops, such as silage maize and pastures for grazing and silage, are prioritized. This picture of crop growing is common for most North European countries. However, the extension of winter crops declines rapidly when reaching the Northern parts of Scandinavia where the climate becomes harsher and outwintering becomes more likely.

Winter crops are preferred because of a higher yield potential than similar spring-grown crops and a good adaption of winter crops to the climate and soils prevailing in those parts of Europe. Profitability of growing these crops is simply larger and the input from pesticides needed is higher compared with spring-sown crops. The dominance of winter crops is reflected in the national cropping areas covered by winter crops (winter wheat, winter barley and winter oilseed rape). In Denmark, winter crops covered 35% of the total area farmed in 2008 and winter wheat was the largest cereal crop covering 42% of the total area with small grain cereals (source: The Danish Advisory Centre 2008). In France, winter crops cover 65% of the total area under arable crop farming in 2007, and winter wheat was also the largest winter crop covering 56% of the area cultivated with winter crops (Source: AGRESTE, http://agreste.agriculture.gouv.fr). In the UK, winter crops covered 69% of the total arable area cropped with winter wheat accounting for 64% of the total area cropped under small grain cereals (Source: Defra Agricultural and Horticultural Survey, 2007).

In the UK, Denmark and northern parts of France, overwintering crops often compose 100% of the crop rotation whereas spring-sown break crops mostly are grown in less than 25% of a crop sequence. (The section *Analyses on typical crop rotation compositions in France, the UK and Denmark* below deals more thoroughly with crop rotations typically found in the North European countries). Such strenuous crop rotations or crop sequences easily favour specific pest problems of which the most important ones are summarized in Appendix B. Some of these pest problems might become very severe, usually requiring an extensive use of pesticides. For example the enrichment of annual grass weeds, notably *Alopecurus myosuroides, Bromus spp.* and *Apera spica-venti*, following intensive cropping of winter

wheat, put a strong pressure on herbicide use (Melander *et al.*, 2008). These annual grasses cause high yield losses and there is a strong economic incentive to control them effectively (Melander, 1995). In practice, this means full doses and sometimes several applications per season. Effective grass weed control normally gives a return to the grower but increasing pesticide consumption evidently goes along with a high demand for grass weed control. This has particularly been the case in Denmark in recent years where reduced tillage systems have further accentuated the problems (Melander *et al.*, 2008; Clarke *et al.* 2000; Orson 2006). In addition to herbicides, fungicide use have also been seen to increase when the crop sequence have more winter wheat and becomes less varied (Jørgensen & Kudsk, 2006). Pesticide consumption in the different crops and countries are further discussed in the section below "Treatment Frequency Indices for each country".

Current winter crops based cropping systems (WCCS) with a high proportion of winter cereals are pesticide demanding and match poorly with the current political goals of many European countries to reduce pesticide input. For example countries such as Denmark, Germany, France, the Netherlands and Sweden have already launched pesticide action plans to move agriculture away from a high dependence on pesticides to a lower dependence. Ideally, crop sequences should have a much stronger mixture of annual crops with varied sowing times (spring versus autumn) and periods with perennial crops to really counteract unwanted and severe pest problems, thereby limiting the need for pesticides. However, this is not very likely to happen because crop choice and the configuration of cropping systems is mainly driven by the demand for cereal staples and by short-term economic factors such as the prevailing commodity prices and the yield potential of the crops. A widespread cropping of WCCS will still prevail in North European agriculture in the near future, and crop protection systems will need to deal with that scenario. In the short term, only modest changes of the crop sequences appear feasible and less dependence on pesticides should mostly rely on other measures, such as preventive, cultural and non-chemical control methods along with improved spraying technologies and optimized pesticide doses. In the main, this is the situation addressed by the AS and IS1 systems proposed in this report. However, in the longer term new innovations within breeding, electronics, robotics, models for forecasting pest incidences and many other techniques may change the situation entirely. The second part of the RA2.6a case study will go further into such future scenarios of WCCS.

Interactions with other ENDURE activities

The case study has benefitted strongly from interacting with the work on developing the assessement tool DEXiPM. DEXiPM is an outcome of the interactions between other ENDURE activities, notably RA2.4 / RA2.3 / RA3.1 / RA3.2 / RA3.4 / RA3.5, covering various issues such as environment, economy, socio-economy and landscape management. The DEXiPM tool is presented in more details in the section: 'DEXiPM and links to RA2.6a' on page 25 in this report.

The outcomes of the previous RA1 cases studies on *Winter wheat* and *Integrated weed management* have delivered valuable information on relevant pests to consider for WCCS including prospects of combining preventive, cultural and direct control tactics. EUROWHEAT in IA2.1 has provided a list of cultural tactics and its potential for suppressing pests in WCCS. RA2.6a has further extended the list. RA4.2 has informed about the potential of genetics to redesign cropping systems and RA2.2 is covering important information about more advanced technologies of relevance to IS1 and IS2.

Assessments of the potential for biological control agents to reduce TFI in AS and IS1 systems and of the influence of landscape and habitat management on pest populations have benefitted from interaction with RA4.3 and RA2.3.

Analyses on typical crop rotation compositions in France, the UK and Denmark

Denmark

In order to investigate the composition of the Danish crop rotations, the information in the Danish Field Database (DFD) is used.

Description of the Danish Field Database (DFD)

DFD is a database compiling information on crop and working processes on field level. The information is the same as the farmers give to the authorities to get their EU subsidies. Currently more than 1.45 million hectares (approx. 57%) of the Danish arable land is stored in the DFD. As the database holds information several years back, it therefore gives a unique opportunity to investigate, on field level, the cropping history in Denmark.

Method and results

DFD contains information at field level, as far back as the farmer/advisor has registered his field data. The further back in time, the fewer fields will be available, as some farmers only recently joined the database. Initially the data in the database were therefore examined under the following assumptions:

- Only fields with a 4-year known cropping sequence were included (approx. 110,000 fields), despite the fact that in many cases it is advised to have more than 4 years between similar crops (e.g. oilseed rape and potatoes)
- The crop rotation must be independent of year, meaning that only the sequence of crops matters (e.g. crop rotation A B C D will be similar to C D A B but not C A D B)
 - o In order to secure this, the computer runs through each individual crop rotation and compares it with all the remaining rotations, by shifting the year 4 times.

Performing the mentioned routine in DFD reveals 28,976 crop rotation combinations of which only 9618 crop rotations occurs more than one time and only 10 occurs in more than 1% of the incidences. As can be seen from Table 1, the most common crop rotation is winter wheat grown in monoculture. It must however be noted, that no single crop rotation occurs in more than 3.6% of the cases.

Table 1. Top ten 4-year crop rotations in Denmark. WW: Winter wheat, WB: Winter barley, WR: Winter oilseed rape, M: Maize (silage), GL: Grass ley, SB: Spring barley, F: Fallow, O: oats.

Crop rotation	Year 1	Year 2	Year 3	Year 4	Total	% af fields
1	WW	WW	WW	WW	3963	3.6
2	WB	WR	WW	WW	3093	2.8
3	WW	WW	WW	WR	2213	2.0
4	M	M	M	M	1794	1.6
5	GL	GL	GL	GL	1619	1.5
6	SB	SB	SB	SB	1548	1.4
7	F	F	F	F	1161	1.1
8	WB	WR	WW	SB	1093	1.0
9	WW	WW	WW	SB	1088	1.0
10	О	WW	WW	WW	920	0.8

The above mentioned is relatively clearly described, mainly due to the large number of fields. In order to catch possible longer crop rotations, the next step was to perform the same analysis 6 years back. By doing so, the amount of fields was reduced to approx. 22,000. In Table 2 it is seen that the most common crop rotation again is winter wheat in monoculture, (2.65% of the cases).

Table 2. Top ten 6-year crop rotations in Denmark. WW: Winter wheat, WB: Winter barley, WR: Winter oilseed rape, M: Maize (silage), GL: Grass lay, SB: Spring barley, F: Fallow, GK: Grass clover, CT: Christmas trees.

Crop rotation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Total	% af fields
1	WW	WW	WW	WW	WW	WW	599	2.65
2	M	M	M	M	M	M	309	1.37
3	WW	WW	WW	WW	WW	WR	260	1.15
4	WB	WR	WW	WW	WW	WW	237	1.05
5	F	F	F	F	F	F	169	0.75
6	GL	GL	GL	GL	GL	GL	152	0.67
7	F	F	F	F	F	GK	145	0.64
8	WW	WW	WW	WW	WW	SB	131	0.58
9	SB	SB	SB	SB	SB	SB	118	0.52
10	СТ	CT	CT	СТ	СТ	СТ	96	0.42

One could easily conclude, based on the above analysis, that wheat after wheat is the most common crop rotation in DK. The conclusion is, however, rather that the vast majority of the farmers actually use very different crop rotations, as more than 85% of the crop rotations fall outside "top 10" in Tables 1 and 2.

In order to get a little closer to the answer, another analysis was performed on the 5-year rotations (approx. 50.000 fields). In this analysis, the crops were divided in 4 groups, defined as:

- Winter cereals (wheat, barley, triticale and rye)
- Winter oilseed rape
- Spring cereals (wheat, barley and oats)
- Other

The 5-year rotations were then compiled in the different groups according to the occurrence of the different crops (e.g. the rotation 60-20-20-0 consists of 60% winter cereals, 20% winter oilseed rape and spring cereals and nothing else). The results of this analysis can be seen in Table 3.

By compiling the rotations in this way a much better indication of the status of the Danish crop rotations can be obtained. It is e.g. seen from Table 3 that more than 10% of the crop rotations in Denmark consist of winter cereals, only separated by 1 year of oilseed rape. In terms of weed control, and especially grass weeds, this is not a durable way. The reason for these results should be found in the large production of pigs. Farmers with pigs can earn significantly more from growing only winter cereals, despite the increased costs of pesticides (approx. 100-150 €). This is because the feeding value from e.g. winter wheat is higher than the alternative spring crops. Furthermore, if oilseed rape is used, the farmer has to buy in extra wheat for fodder, at a price that often is €2 higher/100 kg than what he can sell his own produce for. It should, however, also be mentioned that the advantage of growing winter crops in monoculture is easily compensated by the severity of resistance problems, etc. which most likely will occur in such a crop rotation over time.

Table 3. Results of the analysis of 5-year rotations, followed by a compilation of the results in groups. The total area analyzed is 232,321 hectares. W: Winter cereals, WR: Winter oilseed rape, S: Spring cereals, O: Other crops.

	% in crop rotation											
Rotation					Area	% of analyzed						
no.	W	WR	S	О	(ha)	area						
1	0	0	0	100	35,108	15.1						
2	80	20	0	0	25,770	11.1						
3	60	20	20	0	16,461	7.1						
4	0	0	20	80	16,440	7.1						
5	100	0	0	0	15,862	6.8						
6	0	0	40	60	9,788	4.2						
7	80	0	20	0	8,580	3.7						
8	40	20	40	0	7,737	3.3						
9	20	0	20	60	6,816	2.9						
10	60	0	40	0	6,400	2.8						
11	40	20	20	20	6,184	2.7						
12	40	0	40	20	6,065	2.6						
13	60	0	20	20	5,885	2.5						

	% in crop rotation										
Rotation					Area	% of analyzed					
no.	W	WR	S	О	(ha)	area					
14	40	0	20	40	5,363	2.3					
15	0	0	60	40	5,139	2.2					
16	20	0	40	40	5,047	2.2					
17	40	0	60	0	4,815	2.1					
18	0	0	100	0	4,724	2.0					
19	20	0	0	80	4,139	1.8					
20	60	20	0	20	3,870	1.7					
21	20	0	80	0	3,489	1.5					
22	20	0	60	20	3,396	1.5					
23	60	0	0	40	2,946	1.3					
24	0	0	80	20	2,940	1.3					
25	40	0	0	60	2,878	1.2					
26	80	0	0	20	2,627	1.1					
27	20	20	60	0	2,551	1.1					
28	60	40	0	0	2,424	1.0					
29	40	20	0	40	1,895	0.8					
30	20	20	40	20	1,769	0.8					
31	20	20	20	40	1,410	0.6					
32	40	40	20	0	1,159	0.5					
33	20	20	0	60	560	0.2					
34	0	20	20	60	402	0.2					
35	0	20	80	0	392	0.2					
36	0	20	40	40	392	0.2					
37	0	20	60	20	319	0.1					
38	0	20	0	80	202	0.1					
39	40	40	0	20	120	0.1					
40	20	40	20	20	88	0.0					
41	20	40	0	40	83	0.0					
42	20	40	40	0	49	0.0					
43	0	40	20	40	20	0.0					
44	40	60	0	0	17	0.0					
45	0	40	40	20	1	0.0					
46	0	60	0	40	0	0.0					

From the results it is also seen that the third most common rotation is one of those recommended by the advisors in practice, in which two years of winter wheat are separated by one year of spring cereals and one year of winter oilseed rape. Even though it will be better with 2 years of spring cereals, this rotation is much better than number 2, in terms of reducing weed problems. In Table 4, the same analysis is performed for the 4-year rotations. In this case, there are a lot more fields in the analysis (covering 548,112 hectares), increasing the confidence in the data. The results indicate that continuous growing of winter cereals with one year of oilseed rape again is the second most important rotation in the 4-year analysis.

Table 4. Results of the analysis of 4-year rotations, followed by a compilation of the results in groups. The total area analyzed is 548,112 hectares. W: Winter cereals, WR: Winter oilseed rape, S: Spring cereals, O: Other crops.

% in crop rotation										
						% of				
Rotation					Area	analyzed				
no.	W	WR	S	О	(ha)	area				
1	0	0	0	100	92,744	16.9				
2	75	25	0	0	76,846	14.0				
3	100	0	0	0	51,327	9.4				
4	0	0	25	75	41,645	7.6				
5	50	25	25	0	35,656	6.5				
6	75	0	25	0	31,347	5.7				
7	0	0	50	50	24,396	4.5				
8	50	0	50	0	22,500	4.1				
9	50	0	25	25	21,240	3.9				
10	25	0	25	50	19,816	3.6				
11	25	0	50	25	16,013	2.9				
12	0	0	100	0	15,569	2.8				
13	25	0	75	0	14,386	2.6				
14	25	0	0	75	13,718	2.5				
15	0	0	75	25	13,636	2.5				
16	25	25	50	0	10,592	1.9				
17	50	0	0	50	10,061	1.8				
18	75	0	0	25	9,928	1.8				
19	50	25	0	25	9,351	1.7				
20	25	25	25	25	8,017	1.5				
21	25	25	0	50	2,790	0.5				
22	50	50	0	0	1,607	0.3				
23	0	25	75	0	1,599	0.3				
24	0	25	25	50	1,240	0.2				
25	0	25	50	25	1,094	0.2				
26	0	25	0	75	450	0.1				
27	25	50	25	0	414	0.1				
28	25	50	0	25	64	0.0				
29	0	50	25	25	49	0.0				
30	0	50	0	50	10	0.0				
31	0	50	50	0	6	0.0				

UK

Survey data

In order to investigate the composition of the UK crop rotations, information was sought from the UK Defra-funded winter wheat and winter oilseed rape pest and disease surveys. The winter wheat surveys started in 1975 and have been conducted annually with the exception of 1984 and 1985. At least 300 crops are assessed each year in a random sample taken from

farms across England and Wales (1975-2002) and then England only from 2003 onwards. The winter oilseed rape survey began in 1987 and involves assessment of 100 crops on three occasions during the growing season. The survey included crops in Wales until 2002 and then England only from 2003 onwards. CropMonitor (www.cropmonitor.co.uk) took over the surveys in 2003.

Analysis of data indicated that the was no "typical rotation" for the UK but many different combinations of crop sequences depending on many different factors including market forces. A number of different analyses were done to build up a framework for the most usual crop sequence for an arable setting based on a winter crop-based rotational context.

Both sets of survey data record the following categories of crops:

Winter wheat, other cereals, pulses/legumes, potatoes, grass, fallow, other crops, oilseed rape, Setaside. No distinction is made between spring or winter crops for 'other cereals' or oilseed rape.

Proportion of each crop that was preceded by another arable crop

The survey data were analyzed to indicate which proportions of the crop was preceded by each of the following arable crops: winter wheat, winter barley, winter oilseed rape, spring barley, potatoes, winter beans, spring beans, sugar beet, other.

Table 5a. Winter Wheat - Per cent of crops (where previous crop known) preceded by different crops for England and Wales (Welsh data included only up to 2003).

Previous crop		Harvest years							
	2002	2003	2004	2005	2006	2007	2008		
Winter wheat	23.81	33.96	27.53	23.90	27.80	28.27	25.95		
Other cereals	7.14	5.28	5.57	5.51	5.41	3.89	4.15		
Pulses/legumes	19.05	12.83	13.94	14.34	15.83	13.43	9.00		
Potatoes	5.95	10.57	4.88	6.25	5.41	3.53	7.61		
Grass	2.08	3.77	2.44	2.21	3.09	2.47	6.57		
Fallow	0.3	0.38	0.35	0	0.77	0.35	1.04		
Other crops	9.52	9.06	14.63	16.18	12.36	11.31	13.15		
Oilseed Rape	22.32	17.74	23.0	28.31	25.48	32.86	29.76		
Setaside	9.82	6.42	7.67	3.31	3.86	3.89	2.77		

Table 5b. Winter Barley - Per cent of crops (where previous crop known) preceded by different crops for England and Wales (Welsh data included only up to 2003).

Previous crop	Harvest	years		
	2002	2003	2004	2005
Winter barley	19.32	18.95	19.67	21.23
Other cereals	74.92	68.95	67.76	73.18
Pulses/legumes	0.34	0.53	2.73	1.12
Potatoes	1.69	3.68	0	0.56
Grass	1.02	3.16	1.09	0.56
Fallow	0	0	0	0
Other crops	0.68	1.58	3.83	1.68
Oilseed Rape	0.34	1.05	1.64	1.12
Setaside	1.69	2.11	3.83	0.56

Table 5c. Winter Oilseed Rape - Per cent of crops (where previous crop known) preceded by different crops for England and Wales (Welsh data included only up to 2003).

Previous crop	Harvest years								
	2002	2003	2004	2005	2006	2007	2008		
Winter wheat	47.31	69.89	61.22	61.22	52.08	53.0	64.65		
Other cereals	39.78	25.81	35.71	32.65	42.71	40.0	31.31		
Pulses/legumes	2.15	1.08	0	1.02	0	1.0	0		
Potatoes	0	0	0	0	0	0	1.01		
Grass	0	0	0	0	0	1.0	0		
Fallow	0	0	0	0	1.04	0	0		
Other crops	0	0	0	1.02	0	0	1.01		
Oilseed Rape	0	1.08	0	1.02	0	1.0	0		
Setaside	10.75	2.15	3.06	3.06	4.17	4.0	2.02		

Where winter wheat was being grown, the two main preceding crops were winter wheat (presumably a "first" wheat) or a break crop (Table 5a). It is interesting to note that ~50 % of previous break crops were oilseed rape and/or pulses/legumes in the years 2002-2006 but that more recently pulses/legumes seem to be grown less with oilseed rape gaining in dominance as the break crop of choice, presumably since winter oilseed rape became a more profitable option. Winter oilseed rape is also attractive to some growers as it provides a window of opportunity for grass weed management whilst also returning a profitable crop, whereas pulses and legumes are currently less profitable. Table 5b again indicates the dominance of winter wheat in the rotation accounting for the high percentage of "other cereals". This also indicates the role that winter barley has as the non-wheat cereal break crop presumably again because it is still relatively profitable in comparison to other "non-wheat" options. It should be noted that winter barley tends to be grown on a "regional" basis, predominantly in the more northern regions of the survey data area. Table 5c higlights the dominance of winter wheat within the arable rotation. These three tables support the notion that the most common crop sequence tends to include 1-3 years of winter wheat, possibly followed by barley, followed by a break crop which was predominantly winter oilseed rape.

Common crop sequences

The survey data were analyzed to identify the five most common crop sequences that followed winter wheat, winter barely or winter oilseed rape and to indicate the proportion of each crop that was followed by each sequence.

Key to crop sequences:

W = winter wheat (not coded for in winter barley survey - in other cereals category)

B = winter barley (coded for in winter barley survey - otherwise in other cereals category)

C = other cereals

P = pulses/legumes

S = potatoes

G = grass

O = other crops

R = oilseed rape

A = setaside

Table 6a. Most common crop sequences leading up to wheat (in chronological order, with wheat as the final crop in each list)

	Crop sequence							
1998-2002	W,W,C,R,W	W,W,W,W,W	W,W,R,W,W	R,W,W,P,W	W,R,W,P,W			
% of sampled fields	4.11	3.77	3.77	3.42	3.42			
1999-2003	W,W,W,W,W	W,W,P,W,W	W,W,R,W,W	W,C,R,W,W	W,W,C,R,W			
% of sampled fields	4.26	3.40	3.40	2.98	2.98			
2000-2004	W,W,W,W,W	W,W,C,R,W	W,W,R,W,W	W,P,W,R,W	W,C,R,W,W			
% of sampled fields	5.04	4.65	3.49	3.10	2.71			
2001-2005	W,P,W,R,W	W,W,C,R,W	W,W,W,W,W	R,W,W,R,W	R,W,W,P,W	R,W,C,R,W		
% of sampled fields	4.58	4.17	3.33	3.33	2.92	2.92		
2002-2006	W,W,C,R,W	W,W,W,W,W	W,P,W,R,W	R,W,C,R,W	W,W,R,W,W			
% of sampled fields	6.40	4.40	4.40	4.40	3.80			
2003-2007	W,C,R,W,W	W,R,W,P,W	W,W,R,W,W	W,W,W,W,W	R,W,W,R,W	W,P,W,R,W	W,R,W,R,W	R,W,C,R,W
% of sampled fields	4.47	4.07	3.66	3.25	3.25	3.25	3.25	3.25
2004-2008	W,W,R,W,W	G,G,G,G,W	W,R,W,R,W	W,W,W,W,W	W.R.W.O.W	R,W,W,R,W		
% of sampled fields	5.41	4.63	4.25	3.09	2.70	2.70		

Table 6b. Most common crop sequences leading up to Winter barley (in chronological order, with Winter barley as the final crop in each list)

	Crop sequer	Crop sequence						
1998-2002	B,R,C,C,B	C,B,R,C,B	C,P,C,C,B	C,R,C,C,B	C,B,O,C,B			
% of sampled fields	8.18	5.91	3.18	3.18	3.18			
1999-2003	B,R,C,C,B	C,B,R,C,B	C,R,C,C,B	R,C,P,C,B	R,C,C,C,B			
% of sampled fields	5.63	5.0	4.38	4.38	3.75			
2000-2004	C,B,O,C,B	B,B,B,B,B	B,R,C,C,B	C,C,C,C,B	C,P,C,C,B	C,R,C,C,B		
% of sampled fields	5.84	5.19	5.19	3.9	3.25	3.25		
2001-2005	B,R,C,C,B	B,B,B,B,B	G,G,G,C,B	B,O,C,C,B	B,B,O,C,B	P,C,R,C,B		
% of sampled fields	8.72	5.37	5.37	2.68	2.68	2.68		

Table 6c. Most common crop sequences leading up to Winter OSR (in chronological order, with Winter OSR as the final crop in each list)

		<u> </u>		(
	Crop sequenc	e						
1998-2002	W,R,W,W,R	R,W,W,C,R	W,P,W,C,R	W,O,W,C,R	W,P,W,W,R	W,W,R,W,R	R,W,R,W,R	
% of sampled fields	15.66	9.64	6.02	4.82	3.61	3.61	3.61	
1999-2003	W,R,W,W,R	W,P,W,W,R	R,W,W,C,R	R,W,C,W,R	R,W,P,W,R	R,W,R,W,R	W,A,W,C,R	
% of sampled fields	12.64	8.05	6.90	4.60	4.60	3.45	3.45	
2000-2004	W,R,W,W,R	W,P,W,W,R	W,O,W,W,R	R,W,W,C,R	R,W,P,W,R	W,C,W,C,R	W,S,W,C,R	
% of sampled fields	12.50	5.68	5.68	4.55	3.41	3.41	3.41	
2001-2005	W,R,W,W,R	R,W,W,C,R	W,P,W,W,R	R,W,P,W,R	C,R,W,W,R	P,W,W,C,R		
% of sampled fields	10.59	5.88	4.71	4.71	3.53	3.53		
2002-2006	R,W,W,C,R	C,R,W,C,R	W,R,W,W,R	R,W,P,W,R	W,W,P,W,R	W,W,R,W,R	P,W,W,C,R	
% of sampled fields	6.59	6.59	5.49	5.49	3.30	3.30	3.30	
2003-2007	C,R,W,C,R	R,W,P,W,R	R,W,W,C,R	W,P,W,C,R	R,W,O,W,R			
% of sampled fields	7.14	6.12	6.12	5.10	4.08			
2004-2008	W,R,W,W,R	R,W,R,W,R	W,P,W,W,R	W,R,W,C,R	R,W,P,W,R	C,R,W,C,R	W,W,R,W,R	
% of sampled fields	11.34	6.19	5.15	5.15	4.12	4.12	4.12	

As with previous data presented for the UK (Tables 5a-c), Tables 6a-c indicate a diverse series of cropping sequences dominated by winter wheat as the main crop and winter oilseed rape as the primary break crop. However, there was no particular temporal pattern, with the ranking of sequences changing from year to year, presumably determined by market forces within the industry. Table 6a indicates this very well with various sequences involving at least 2 winter wheats in the previous 4 seasons for all crop sequences for all years. The exception to this was 2008 when 4.63% of crops that were sown to winter wheat crops were sown on land that previously had been long-term (4 years at least) grass leys, presumably because winter wheat was so profitable that growers required more land to sow into wheat. In all years surveyed, a small proportion of growers grew what could be considered "continuous wheat" with the percentage of crop sown to W-W-W-W-W ranging from 3.09% (2008) to 5.04% (2004, when this crop sequence was the largest percentage of any crop sequence that year). Table 6a also highlights the shift away from pulses and legumes towards winter oilseed rape as the break crop of choice in recent years.

There were fewer data concerning crop sequences following winter barley but they further demonstrated the dominance of cereals in the rotation. Winter barley rarely occurred more than one year in three except in 2004 and 2005 when continuous winter barley was the second most common sequence to follow winter barley, possibly reflecting the increase in cereal prices in recent years, particularly with regard to the premium for malting barley.

Table 6c is the most interesting of the set of three, consistently showing that the predominant crop sequence consisted of two cereal crops (almost always winter wheat) followed by oilseed rape, i.e. a three-course W-W-R 'rotation'. This crop sequence was generally grown twice as often as the next most common sequence. However, this table, as with Tables 6 a and b, shows that most 'rotations' are variations on this theme and that there is no rigid pattern to crop sequences in England.

Crop frequency within the rotation

For each of the crops in the survey, the time gap between successive crops of the same species on the same site was analyzed (Tables 7a-c).

Table 7a. Per cent winter wheat crops with different time gaps since the last winter wheat crop, England and Wales (Wales included up to 2003 only).

	Harvest years								
No. of years gap	2002	2003	2004	2005	2006	2007	2008		
0	25.0	32.34	27.91	22.50	23.60	26.42	24.32		
1	43.49	33.62	46.12	48.75	42.80	47.56	41.31		
2	19.18	17.87	15.12	20.00	20.80	12.60	15.06		
3	6.85	8.09	3.49	1.67	3.20	8.13	6.18		
4 or more	5.48	8.09	7.36	7.08	9.60	5.28	13.13		
Mean no. of years gap	1.243	1.259	1.163	1.221	1.324	1.183	1.425		
Range*	0.75, 2	0, 2	0, 2	1, 2	1, 2	0, 2	1, 2		

^{*} lower and upper 25 percentiles

Table 7b. Per cent winter barley crops with different time gaps since the last winter barley crop, England and Wales (Wales included up to 2003 only).

	Harvest years							
No. of years gap	2002	2003	2004	2005				
0	20.45	18.13	19.48	22.15				
1	6.36	3.13	3.90	4.70				
2	15.45	16.25	21.43	13.42				
3	17.27	12.50	14.29	20.81				
4 or more	40.45	50.0	40.91	38.93				
Mean no. of years gap	2.509	2.731	2.532	2.497				
Range*	1, 4	2, 4	2, 4	1, 4				

^{*} lower and upper 25 percentiles

Table 7c. Per cent oilseed rape crops with different time-gaps since the last oilseed rape crop, England and Wales (Wales included up to 2003 only).

	Harvest years								
No. of years gap	2002	2003	2004	2005	2006	2007	2008		
0	0	1.15	0	1.18	0	1.02	0		
1	8.43	5.75	4.55	4.71	8.79	9.18	14.43		
2	20.48	18.39	17.05	21.18	16.48	13.27	24.74		
3	22.89	28.74	13.64	23.53	16.48	21.43	17.53		
4 or more	48.19	45.98	64.77	49.41	58.24	55.10	43.30		
Mean no. of years gap	3.108	3.126	3.386	3.153	3.242	3.204	2.897		
Range*	2, 4	2.5, 4	3, 4	2, 4	2.5, 4	3, 4	2, 4		

^{*} lower and upper 25 percentiles

The Defra Agricultural and Horticultural Survey (2007) indicated that winter crops covered 69% of the total arable area cropped in England. Of this area, winter wheat accounted for 64% of the total area cropped under small grain cereals and this is clearly reflected in the frequent reoccurrence of winter wheat shown in Table 7a. The current practice of "short rotations" consisting of 2-3 crops including 1-3 winter wheats grown over a 2-4 year period can clearly be seen in Table 7a where the mean number of years between successive winter wheat crops ranged from 1.16 (2004) to 1.43 (2008) years. There was no clear temporal trend in the length of gaps between winter wheat crops.

Table 7b indicates that the situation for winter barley was different and highlights the use of winter barley as a 'non winter-wheat break crop', with the mean number of years between successive crops generally double that of winter wheat (ranging from 2.5 years [2005] to 2.7 years [2003]). In contrast with the winter wheat data in which between 81% (2008) and 91% (2005) of fields sown with winter wheat had previously been sown to the same crop within the past three years, only 38% (2003) to 45% (2004) of winter barley fields had been previously sown with winter barley within the same time period.

The data for winter oilseed rape crops indicate the important "break crop role" that the crop has within UK agriculture (Table 7c). In contrast with both winter wheat and (to a lesser extent) winter barley, winter oilseed rape was hardly ever drilled after winter oilseed rape, with the mean number of years between successive crops ranging from 2.9 years (2008) to 3.4 years (2004). As with Tables 7a and b, there was no clear temporal pattern to the data, although there was some evidence of an increased percentage of fields being sown with winter oilseed rape within 2-3 years of the previous crop (2006 onwards), i.e. there were more 'rotations' that were shorter (WWR or WRWR), as reflected in Table 6c.

France

Table 8 summarizes the main crop successions observed in France and including winter crops that were defined by experts (advisors from ACTA, *chambres d'agriculture*, agricultural ministry, researchers from INRA) according to geographical zone in France (Ecophyto R&D report Guichard *et al.*, 2009). Quantitative data are not available to express the proportion of the agricultural area occupied by each crop sequences. However, it can be noticed that these crop sequences are very diverse.

Table 8. Main crop sequences per region in France, according to local experts (Ecophyto

R&D report; Guichard et al., 2009).

Region	Centre Poitou	Ile de France, Champagne- Ardennes, Bourgogne	Loraine, Alsace, Franche comté	Midi Pyrénées, Aquitaine
Main crop sequence	wosr-ww-ww-wb wosr-ww-su-dw-pe- ww ma-sb/dw ww-su-sb	wosr/pe-ww-sb/wb ma/beet-ww-ww/wb wosr-ww-pe-ww al-ww-beet/pot-ww	wosr-ww-w/wb wosr-ww-pe-ww ma-ma-ww su/wosr-ww-wb	ma-ww-su-w su-ww-wosr-ww
Region	Nord-Ouest	Nord, Picardie, Normandie	Sud Est	
Main crop sequence	ma-ww-ma-ww wosr-ww-wb-ma-ww	wosr-ww-wb/ww beet-ww-wosr/pe/li- ww pot-ww-li/pe-ww beet-ww-pot-ww- veg-ww/wb wosr-ww-pe-ww	ma-ww ma-ma-ww-wosr-ww	
Legend				
ww	winter wheat		SW	spring wheat
wb	winter barley		sb	spring barley
wosr	winter oilseed rape		sosr	spring oilseed rape
wbe	winter beans		sbe	spring beans
beet	sugar beet		OW	another winter crop
pot	potatoes		os	another spring crop
ma	maize		a1	-1C-1C-
su	sunflower		al li	alfalfa
dw	durum wheat			linen
pe	peas		veg	vegetables

National statistical analyses on crop sequences are not available in France. However, field surveys are carried out by the ministry of agriculture every 5 years since 1994, and since 2006 it also accounts for the five years preceding the surveyed field. These data can be be extrapolated and allow us to give some overview about main crop sequences in France. Further quantitative analyses were therefore carried out on national 2006 data from AGRESTE (five-year surveys on agricultural practices, by region). Table 9 presents the proportion of the preceding crops for four main winter crops, winter wheat, winter barley, winter oilseed rape and potato.

Table 9. National average proportion of preceding crops for four winter crops (survey AGRESTE 2006, http://agreste.agriculture.gouv.fr/page_accueil_82/donnees_ligne_2.html).

	Preceding crop (% of the area of the given crop)							
	WOSR	Wheat	Barley (and other cereals for wheat)	Maize	Beetroot	Other		
Winter wheat	22	15	7	24		32 ^a		
Barley	11	73		5		11 ^b		
WOSR		47	47			6 ^c		
Potatoes		66	8		8	18 ^d		

^aBeetroot is included in this figure

The main crops planted before wheat were maize, winter oilseed rape and wheat. The wheat was the major preceding crop for barley (73%) as well as for potatoes (66%). Finally, the preceding crops for winter oilseed rape are cereals, with an equal distribution between wheat (47%) and barley (47%). It is important to notice that these proportions varied greatly between regions (see the online detailed data on the AGRESTE website, http://agreste.agriculture.gouv.fr/page accueil 82/donnees ligne 2.html).

To complete this quantitative data, analyses of crop successions over the 6 years (2001-2006) were carried out (Schmidt, 2009): the frequency of wheat, rape, cereals and spring crops were surveyed and are represented in the following table by the proportion of area concerned.

Table 10. Crop successions over 6 years (2001-2006) (Schmidt, 2009, data and funds provided by the statistical and prospective service from the French ministry of agriculture).

Frequency (number of years over 6 years)	1	2	3	4	5	6	Number of surveyed fields	Area of surveyed fields (ha)
% area with wheat	7.8%	26.0%	49.0%	13.7%	2.5%	1.0%	3448 ^a	4188742 ^a
% area with rape	23.7%	14.0%	1.3%	0.0%	0.0%	0.0%	3448ª	4188742ª
% area with rape (area in rape in 2006)	30.9%	59.8%	9.1%	0.1%	0.0%	0.0%	1495 ^b	987917 ^b
% area with straw cereals	4.7%	7.9%	36.7%	42.0%	6.9%	1.8%	3817ª	4595424 ^a
% area with spring crops	22.7%	27.8%	20.2%	3.1%	1.5%	0.0%	3817ª	4595424ª
Number of crop species over 6 years	1	2	3	4	5	6	Number of surveyed fields	Area of surveyed fields (ha)
% area with the given number of species	1.0%	22.8%	45.9%	27.8%	2.4%	0.0%	3817ª	4595424 ^a

^afields cultivated with wheat in 2006

Minimum value, <mark>Maximum value</mark>

^bBarley and other cereals and beetroot are included in this figure

^cWOSR, maize and beetroot are included in this figure

^dWOSR and maize are included in this figure

^bfields cultivated with rape in 2006

In almost 50% of the area surveyed (fields in wheat in 2006), wheat occurs every two years (3 years out of 6). It is important to notice that in 1% of cases, continuous wheat crop occurs over 6 years (Schmidt, 2009). On the same area, rape was cultivated one year out of 6 only on 22.7% of cases. On the other hand, almost 60% of the area cultivated with rape in 2006 was planted with winter oilseed rape every 3 years (2 years out of 6) and never occurred more than 4 years out of 6. Moreover, on almost 10% of the national area cultivated with rape in 2006, rape occurs at least every 2 years on average. More generally, cereal straws were present 4 years out of 6 on the surveyed area (fields in wheat in 2006), whereas spring crops were present from 1 to 3 years in average. Finally, the average number of crop species cultivated over 6 years was 3 different species, 5 species being very rare and 6 species never occurring. Based on these data, more frequent crop sequences were defined and are presented below. The total area is almost made up by just a few crop sequences (here 11 to cover 80% of the area; 38 crop sequences were found to cover the total area).

Table 11. More frequent crop sequences regarding spring crops, straw cereals and winter oilseed rape at the national level, based on 3448 surveyed fields, cultivated with wheat in 2006 (Schmidt, 2009, data and funds provided by the statistical and prospective service from the French ministry of agriculture).

Number of years with spring crops over 6 years	Number of years with straw cereals over 6 years	Number of years with rape over 6 years	Number of years with other crops over 6 years	% of area	Cumulating % of area
3	3	0	0	18.9%	18.9%
2	4	0	0	15.4%	34.3%
0	4	2	0	11.8%	46.1%
1	4	1	0	10.2%	56.3%
2	3	1	0	5.9%	62.2%
2	3	0	1	4.0%	66.2%
0	5	1	0	3.5%	69.7%
1	5	0	0	3.0%	72.7%
4	2	0	0	2.9%	75.6%
1	4	0	1	2.3%	77.8%
0	6	0	0	1.8%	79.7%

These results show two main types of succession based on the following patterns: one main crop and one straw cereal (29%), and one main crop and two straw cereals (40%). The main crops are mainly spring crops for short rotations. Continuous cereal crops occur on almost 2% of the French cultivated area, and straw cereals occur 5 years out of 6 on 6.5% of the area.

Finally, a typology of practices on oilseed rape was carried out: a multivariate analysis was done accounting for the frequency of straw cereals, oilseed rape among other variables. Four groups were identified and their characteristics are presented in Table 12, including some of the variables that were used in the statistical analysis, as well as other interesting variables, such as the frequency of ploughing ou TFI.

It is interesting to notice that these four groups are closely linked with the characteristics of the crop succession. For instance, the group with the lowest average TFI (group 3) is also the group with the more diversified crop succession (the lowest frequency of straw cereals and oilseed rape, but the highest frequency of spring crop. Other characteristics of IPM production appear in addition to crop succession diversification: lowest field area, lowest N rate (even if

differences are low), highest delay of sowing, high frequency of ploughing and also lowest TFI on herbicide). This group also corresponds to the highest yield. However, it occurs on the lowest area. This group could be characterized as the IPM group.

On the other hand, the group 1, characterized by the highest average TFI on winter oilseed rape (and especially on herbicide and insecticide), correspond to the group with the highest frequency of winter oilseed rape and with the lowest frequency of spring crops. This group also corresponds to the lowest frequency of ploughing, to the highest amount of N fertilizer and to the highest field area (this can be linked to the lower frequency of ploughing). This group could be characterized as the intensive group but surprisingly, the yield is the lowest for this group.

Table 12. Results of the typology of crop protection cultural practices done on winter oilseed rape in 2006, regarding all pests, diseases and weeds (Schmidt, 2009, data and funds provided

by the statistical and prospective service from the French ministry of agriculture).

	1	2	3	4	National ¹
Number of fields surveyed	381	364	241	509	1495
Proportion of fields surveyed	25.5%	24.3%	16.1%	34.0%	100.0%
Area	5690	3778	2380	6030	17877
Frequency of straw cereals (nb					
over 6 years)*	3.57	3.48	2.73	3.65	3.44
Frequency of oilseed rape (nb					
over 6 years)*	2.08	1.55	1.34	1.93	1.78
Frequency of spring crops (nb					
over 6 years)	1.47	1.82	1.83	1.62	1.67
Frequency of ploughing (nb over					
6 years)*	1.39	4.85	3.95	4.32	3.64
Sowing date in comparison with					
the usual date (regional average,					
in two-week difference)*	-0.12	-0.07	0.38	-0.03	0.00
Sowing density (kg-1 ha-1)*	2.85	2.32	2.26	2.85	2.63
Total TFI*	6.88	6.21	5.42	6.78	6.45
TFI herbicides	2.04	1.50	1.54	1.88	1.77
TFI insecticides	3.29	3.07	2.41	3.24	3.08
TFI fungicides (mostly against					
sclerotinia)	1.02	1.18	1.12	1.09	1.10
Total N (kg ⁻¹ ha ⁻¹)	163	163	158	163	162
Yield (hkg ⁻¹ ha ⁻¹)	29.50	30.93	31.35	30.08	30.35
Field area (ha ⁻¹)	14.93	10.38	9.87	11.85	11.96

¹TFI have been estimated only on the fields surveyed. TFI are therefore different from the table in the following section

These various cultural practice combinations highlighted by the multivariate analysis have different proportions in the different French regions. (Detailed data on each region can be found in Schmidt, 2009).

^{*}variables that have been used to determine the 4 groups of the typology Minimum value, Maximum value

Treatment Frequency Indices for each country

Information has been gathered about pesticide usage in several countries, including information about treatment index in winter rapeseed and winter wheat in Germany, France, the UK and Denmark. Data from the four countries originate from different sources (UK: TFI data calculated or estimated from data supplied by The Food and Environment Research Agency, Sand Hutton, Yorks. Yield data from Defra Statistics (Department for Environment, Food and Rural Affairs). France: Ecophyto R&D report Guichard *et al.* 2009, Germany: DK: National statistic data on pesticides).

The way TFI values are calculated varies between the four countries. Denmark calculated TFI taking account separately of each active ingredient in any product. In the other three countries TFI is based on dose rates of complete products, even if the product contained more than one active ingredient (a method which was also used in DK up to 2000). Data based on rates of products rather than on standard doses of active ingredients will generally give rise to lower TFI values. (It is important to highlight the fact that some countries calculated their TFI based on data about real agricultural practices, e.g. the UK, whereas others (e.g. Denmark) calculate it based on selling of active ingredient)

Large differences in pesticide use between countries

There are clearly large differences in pesticide usage between the four countries, regardless of differences in method of TFI calculation, usage in Denmark being much lower than in the other countries. Since the various countries' starting points with regard to pesticide usage are very different, the potential for reducing usage will also vary. It should also be noted that in large countries there are marked regional differences. In Southern France, for example, they spray much less with fungicides than in Northern France due to fewer fungal disease problems.

The UK is the country with the highest usage in both winter wheat and winter oilseed rape. The reasons for such differences are not completely clear but several factors may be involved:

- More serious disease problems in the UK due to the mild wet winters associated with a maritime climate. This encourages fungal disease and facilitates the spread of virus by aphids.
- The use of full rates and of multiple products to combat herbicide resistance in the UK.
- The use in the UK of chemical weed control by large-scale agri-businesses rather than mechanical weeding which is more labour-intensive and energy-intensive.
- More risk-averse pest management practices in the UK
- The high priority given to maintaining crop yield in the UK, as well as profitability
- A less rigid policy framework for implementing pesticide usage reduction in the UK

As an example of the differences between countries, the UK has an average yield increase when using fungicides in wheat of 15 to 25 hkg⁻¹ ha⁻¹. This means that UK farmers are concerned about yield loss and therefore often spray 3-4 times per season with fungicides, although often using 'split doses' where the full rate is applied over two occasions. By contrast, in Denmark the yield increase due to fungicides typically varies from 5 to 15 hkg⁻¹ ha⁻¹ in winter wheat. This indicates that Denmark has fewer disease problems than the UK and can therefore manage diseases with a lower use of fungicides.

Denmark's very low level of pesticide use compared to the other large grain-producing countries is partly due to the fact that Denmark has already incorporated many of the IPM elements in its cropping plans. The low pesticide usage is associated with many years' focus on maintaining a low usage level with the aid of several initiatives, including:

- Pesticide action plans that focus on intensive advice
- Using reduced dosages
- Using damage thresholds, regional warning systems and decision support systems
- Widespread use of resistant varieties

Table 13. Treatment Frequency Index in cereals and oil seed rape from four different countries.

Winter wheat	England 2006	France 2006	Germany 2007	Denmark 2007
Herbicides	2.44	1.4	1.9	1.33
Fungicides	2.26	1.6	1.9	0.64
Insecticides	0.96	0.3	1.2	0.2
Molluscicides	0.12			
Growth regulators	0.97	0.7	0.8	0.18
Total	6.75	4.0	5.8	2.34
Yield t ⁻¹ ha ⁻¹	8.0	7.2	??	7.3

Oil seed rape	England 2006	France 2006	Germany 2007	Denmark 2007
Herbicides	2.27	1.8	1.6	1.2
Fungicides	2.12	1.1	1.0	0.3
Insecticides	1.10	2.8	2.3	1.2
Molluscicides	0.30			
Growth regulators	*	0.4	0.5	0
Total	5.78	6.0	5.5	2.7
Yield t ⁻¹ ha ⁻¹	3.4	3.0		3.5

^{*} The choice of fungicide can be influenced by any additional growth regulatory effect

Winter barley	England 2006	France 2006	Germany 2007	Denmark 2007*
Herbicides	1.97	1.44	1.5	1.33
Fungicides	1.32	1.32	1.1	0.5
Insecticides	0.82	0.2	0.7	0.2
Molluscicides	0.02			
Growth regulators +	0.63	0.56	0.6	0.05
others				
Total	4.76	3.52	4.1	2.0
Yield t ⁻¹ ha ⁻¹	6.6	6.8		5.8

^{*} Estimated based on winter cereal statistics

Spring barley	England 2006	France 2006	Germany 2007	Denmark 2007
Herbicides	1.51	1.16	No data	0.99
Fungicides	1.01	1.05	No data	0.32
Insecticides	0.13	0.1	No data	0.3
Molluscicides	0.01			
Growth regulators	0.14	0.46	No data	0.04
Total	2.80	2.77		1.67
Yield t ⁻¹ ha ⁻¹	5.1	5.9		4.9

ENDURE - Deliverable DR2.16

References

DK: Miljøstyrelsen: Bekæmpelsesmiddelstatistikken

Germany: JKI: Network of reference farms for plant protection - Annual report,

UK: TFI data calculated from data supplied by The Food and Environment Research Agency, Sand Hutton,

Yorks. Yield data from Defra Statistics (Department for Environment, Food and Rural Affairs).

France: Ecophyto R&D report Guichard et al., 2009

DEXiPM and links to RA2.6a

DEXi-PM has been developed for the assessment of sustainability of current and innovative cropping systems proposed by system case study groups in ENDURE. It is a hierarchical qualitative multi-criteria model supported by the software DEXi. It consists in a decomposition of the overall sustainability into more and more specific criteria, starting with environmental, social and economic sustainability. A tree of criteria has been chosen by experts, according to their relevance in terms of sustainability assessment. Criteria are qualitatively estimated, and aggregated with if-then decision rules (to determine the value of a criterion depending on the value of the immediate descendant criteria). Decision rules can be fixed according to scientific data or expertise, or adaptable by the user according to priorities or context. The importance of each criterion is characterized by weights. The model is presented in the deliverable DR 2.14.

DEXiPM is used to estimate a final score for sustainability for the systems assessed, but can also be used as an 'instrument panel' for the sustainability of the system, giving estimated indicators for each aggregated criterion. It therefore provides good visibility for all aspects of the sustainability of a given system. The aim is to provide a framework for discussions around the proposed systems and help the system case study to analyze the advanced and innovative systems proposed. The model is still under development and may need to be improved according to the feedback from the system case study groups (maize and winter crops based cropping systems).

Proposals of AS and IS1 systems for each country

Overview of the crop rotations proposed with calculations on TFI

Country	Systems	Rotation				
			annual			
			TFI			
DK	CS	W. barley – W. rape – W. wheat – W. wheat				
	AS	I. W. barley – W. rape – W. wheat – W. wheat + catch crop – S. barley				
		II. W. barley – W. rape – W. wheat - W. wheat + catch crop – S. barley + catch crop / undersown ley – S. barley	1.68			
	IS	I. W. barley – W. rape – W. wheat – W. wheat + catch crop – S. barley				
		II. W. barley – W. rape – W. wheat - W. wheat + catch crop – S. barley + catch crop / undersown ley – S. barley	1.57			
France CS Bassin Parisien		Sugarbeet-winter wheat-winter oilseed rape-winter wheat	7.2			
	IS Bassin Parisien	(Mustard)-Sugarbeet-Winter Wheat-(Mustard)-Hemp- Winter Wheat-Winter Oilseed Rape-Winter Wheat				
CS Poitou Charentes		1				
CS Bourgog	AS Poitou Charentes	Winter oilseed rape-winter wheat-winter barley- (intermediate legumes)-sunflower-winter wheat				
	CS Bourgogne	Winter oilseed rape-winter wheat-winter barley	7.1			
	IS Bourgogne	Winter oilseed rape-winter wheat-spring barley- alfalfa-alfalfa-winter wheat-(Mustard)-sunflower- triticale	0.4			
UK	CS	W. wheat – W. wheat – W. rape	6.4			
	AS	I W. wheat – S. beans – W. wheat – W. rape	4.7			
		II W. wheat $-$ S. beans $-$ W. wheat $-$ S. wheat $-$ W. rape	4.1			
		II W. wheat $-$ S. beans $-$ W. wheat $-$ S. barley $-$ W. rape	4.2			
	IS1	IIIS W. wheat $-$ S. beans $-$ W. wheat $-$ S. wheat $-$ W. rape	3.3			
		IIIS W. wheat – S. beans – W. wheat – S. barley – W. rape	3.3			
		IIIF W. wheat – S. beans – W. wheat – Fallow – W. rape	3.3			
		IVS W. wheat – S. beans – S. wheat – W. rape	2.9			
		IVS W. wheat – S. beans – S. barley – W. rape	2.9			
		IVF W. wheat – S. beans – Fallow – W. rape	2.9			

Denmark

AGRICULTURAL CONTEXT

Site: Denmark – relevant for most soils and climates throughout the country

Soil and climate: sand, sandy loam and loam soils predominate. Flat, slightly undulating/sloping and hilly fields create a diverse mosaic of the Danish agricultural landscape. Precipitation is evenly distributed over the year with an yearly average of 712 mm for the country. The average temperature is 7.7°C. There is a high risk of leaching from sand and sandy soils during the winter period. Risk of soil erosion is generally low apart from steep fields where some surface run-off soil materials may occur.

Regional context: intensive crop and pig production, low proportion of non-productive area **Specificity of the farm where the system is proposed:** rotations of relevance for pig production. Inverting tillage most commonly used. Perennial weeds are controlled regularly and occur at low levels. Wild oats are hand weeded. Certified seeds are used in about 90% of the sown area of cereals.

CURRENT SYSTEM

Crop sequence: W. barley – W. rape – W. wheat – W. wheat

Crop protection strategy: pesticides

Main pest risk: autumn emerging weeds (all crops), especially grass weeds. Weevil, pollen

beetle (WOSR), aphids (cereals), rust, mildew, septoria, net-blotch

Expected yield given the context: medium to high

<u>ALTERNATIVE CROPPING SYSTEM (AS) / INNOVATIVE SYSTEM (IS1)</u> Proposed crop sequence for AS/IS1 prototype:

- I. W. barley W. rape W. wheat W. wheat + catch crop S. barley
- II. W. barley W. rape W. wheat W. wheat + catch crop S. barley + catch crop / undersown ley S. barley

The two crop rotations proposed constitutes the framework of the Danish suggestions for AS and IS1. The spring-sown crops in a row in rotation II. are expected to suppress annual grass weeds and cleavers (*Galium aparine*) more strongly than rotation I. resulting in a lower need for gramicides. Both rotations are considered for supplying the farmer with sufficient amounts of fodder crops and are thus competitive with current crop rotations typically having even more winter cereals in the rotation. The TFI is already low.

Please note that the AS and IS1 systems are all presented in detail in Appendix A.

<u>LIST OF MAJOR TOOLS USED FOR PESTICIDE REDUCTION IN THE AS SYSTEM</u>

- Inclusion of spring barley in the crop rotation
- Stubble cultivation
- Crop varieties with disease resistance
- Delayed sowing of winter wheat
- Reduced pesticide doses based on decision support systems
- Optimized timing of pesticide application
- Extensive use of warning systems to determine the need for pesticide application
- Inter-row cultivation in winter oil seed rape
- Nutrient placement in spring barley

LIST OF DIFFERENCES BETWEEN AS AND IS1

Both AS and IS1 systems are based on the same crop rotation compositions, which is explained by the need to supply pig producers with sufficient cereal fodder. The major differences between the two systems are thus the measures and tools used in each crop in the rotation.

The new tools to be implemented in IS1 are listed below:

- Optimization of systems to manage logistics at farm level: improves timing, capacity and rounding off of areas because the work is better organized
- Spraying equipment with higher capacity
- Precision agriculture: GPS systems to avoid overlapping, 5% savings in pesticide use in Danish farm test. Weed mapping and patch spraying whenever possible
- Variety mixtures: minimizes disease attack relative to single varieties provided that the varieties are available. Avoid high disease levels
- Species mixtures: winter wheat and winter pea mixtures, less disease attacks in wheat, less aphid attack. Weed problems more uncertain
- Trap cropping. Flowering bordering zones to trap insects
- Better decision support systems. There is still considerable room for improving current systems
- Improved forecasting models, especially against septoria and aphids. These models should be integrated with decision support systems
- Mechanical weeding in cereals: only relevant, if no herbicides are available or extremely restricted
- Landscape management: diversification schemes of crops not seen as a useful tool for practical use.
- Margins management: undesired weed seed spread may occur from cultivated field boundaries creating room for the growth of annual weed species. However, margins can act as barriers for the spread of especially perennial weeds if the boundaries are cultivated frequently enough to prevent weed seed production and vegetative spread of perennials. Beneficial for insect control, margins serve as a barrier and reservoir for predating insects.
- Stewardship schemes
- Harvesting techniques: collecting weed seeds during harvest operation, spot mapping of individual weed species during harvest operation to support subsequent patch spraying in subsequent years (especially mapping thistles and couch grass appears relevant in this context)
- Development of band-spraying techniques against intra-row weeds in oilseed rape
- Adjusted fungicide dosage according to crop biomass
- Soil management: adjusted according to need and problem. Inversion tillage can be avoided in some years

TFI ANALYSES

Table 14 shows the TFIs for herbicide, fungicide and insecticide uses in the individual crops included in the current systems (CS), AS and IS1 systems. The TFIs for AS and IS1 are based on experts judgements of the needs. In contrast to the TFI calculations for France and the UK, the Danish TFIs are based on active ingredients.

Table 14. TFIs for herbicide, fungicide and insecticide uses in each crop included in the current (CS), AS and IS1 systems.

Based on		TEL 00	4.01	400		10.11
2007 data		TFI CS	ASI	ASII	IS I	IS II
Herbicides	w. barley	1.33	1	1	0.95	0.95
	w. oil seed	1100		-		0.00
	rape	1.2	0.5	0.5	0.5	0.5
	w. wheat	1.33	1	1	0.95	0.95
	w. wheat	1.33	1.2	1.2	1.1	1.1
	spring barley		0.7	0.7	0.65	0.65
	spring barley			0.7		0.65
Fungicides	w. barley	0.5	0.4	0.4	0.4	0.4
	w. oil seed					
	rape	0.3	0.2	0.2	0.2	0.2
	w. wheat	0.64	0.6	0.6	0.5	0.5
	w. wheat	0.64	0.6	0.6	0.5	0.5
	spring barley		0.25	0.25	0.25	0.25
	spring barley			0.25		0.25
Insecticides	w. barley	0.2	0.2	0.2	0.2	0.2
	w. oil seed					
	rape	1.2	1.2	1.2	1	1
	w. wheat	0.2	0.15	0.15	0.15	0.15
	w. wheat	0.2	0.15	0.15	0.15	0.15
	spring barley		0.25	0.25	0.25	0.25
	spring barley			0.25		0.25
Growth						
regulator	w. barley	0.05	0	0		
	w. oil seed					
	rape					
	w. wheat	0.2				
	w. wheat	0.2				
	spring barley					
	spring barley					
Round up		0.5	0.5	0.5	0.5	0.5
Total		10.02	8.9	10.1	8.25	9.4
For rotation		2.5	1.78	1.68	1.65	1.57

DEXIPM ANALYSES

Current system (CS): W. barley – W. rape – W. wheat – W. wheat

Alternative system (AS): W. barley – W. rape – W. wheat – W. wheat + catch crop – S. barley

Innovative system (IS1): W. barley - W. rape - W. wheat - W. wheat + catch crop - S. barley + catch crop/undersown ley - S. barley

Context of the analysis

For the comparison of the systems it is assumed that the farmer is a pig producer with a sandy soil type. As mentioned previously, this increases the risk of leaching during the winter period. Risk of soil erosion is generally low apart from steep fields where some surface run-off of soil materials may occur. It is assumed that this is not a problem for this comparison.

Inputs to DEXiPM

In order to give a detailed background of the comparison of the Danish systems, the following table presents the inputs and comments on the choice of input. When looking at the inputs, it becomes

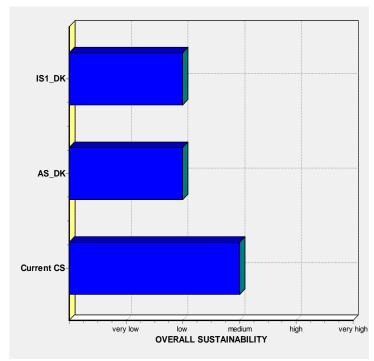
ENDURE - Deliverable DR2.16

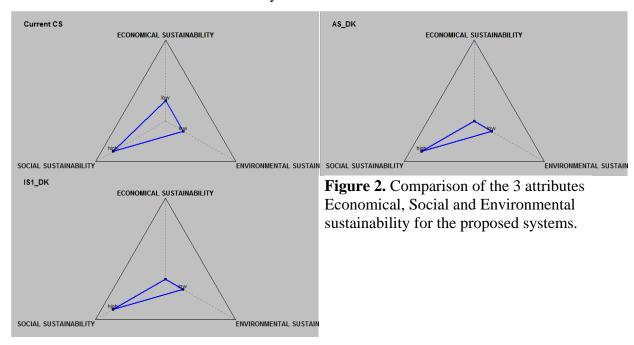
obvious that there are not major overall differences between the inputs of the three systems. This is, however, due to the choice of rotation. They are chosen because they can be implemented in a Danish context without major obstacles to the Danish farmers (besides economy).

Option	Current system	Alternative system	Innovative system	Comment
Leaching risk (soil and climate)	Very high	Very high	Very high	Fixed for comparison
Runoff risk due to context	Low	Low	Low	Fixed for comparison
Field erosion risk due to context	Low	Low	Low	Fixed for comparison
Hydromorphic soil	No	No	No	Fixed for comparison
Potential yield	Medium to high	Medium to high	Medium to high	Fixed for comparison – assumed that the potential yield is in relation to the specific system. If it is marketable yield, AS and IS should be lower.
Regional intensification	Not favourable to biodiversity	Not favourable to biodiversity	Not favourable to biodiversity	Assumed that the area is mainly open- field
Availability of uncropped land	Very low	Very low	Very low	In pig producing areas of DK
Non-productive areas	Low proportion	Low proportion	Low proportion	In pig producing areas of DK
Average market price	Low to medium	Very low	Very low	The farmer will not earn the same amount of money from spring cereals as from winter cereals
Labour hourly wage	Very high	Very high	Very high	The wages in DK are generally very high compared to the rest of EU
Local availability of water for irrigation	High	High	High	There are currently no restrictions to water use
Financial security of the farm	Medium	Low	Low	Implementing the AS and IS-systems will reduce the income of the farmer and thereby the financial security
Number of crops	Medium to low	High	High	See the description of the systems
Proportion of summer, late-harvest crops	Very low	Very low	Very low	Currently not relevant for a pig producer (climate, fusarium etc.)
Crop type	1 type	3 types	3 types	Winter, spring and catch crops
Crop effect on pollinators	Little favourable	Little favourable	Little favourable	Due to oilseed rape. Catch crops are not important in this case due to late establishment
Additional seed cost of crop species or cultivars	No	Moderate	Moderate	Catch crops cost money
Sowing density	Medium	Medium	Medium	Will not be changed significantly by the farmers
Soil cover	High	High	High	In all rotations fields are green in more than 61% of the year
TFI of insecticide	0.45	0.39	0.33	For the CS, official data are available.
TFI of fungicide	0.52	0.41	0.35	Other data are estimated based on expert
TFI of herbicide	1.30	0.88	0.80	knowledge
Total Pesticide TFI Pesticide mobility	2.51 High to medium	2.18 High to medium	1.98 High to medium	Worst case due to sulfonylureas
Pesticide mobility Pesticide eco-toxicity	Medium to low	Medium to low	Medium to low	Due to the strict approval system
Soil cover at pesticide application	High	High	High	This input only makes sense for herbicides under DK conditions
Mineral N fertilizer applications	Low	Low	None	Intensive pig producers apply N as slurry. Catch crops reduces the allowed amount, therefore none in the IS
Organic N fertilizer applications	High	High	High	Slurry
Organic amendments Coverage of crop Nitrogen	Very low/none Balanced	Very low/none Balanced	Very low/none Balanced	On average 10% below economical
requirement				optimum
Mineral P fertilizer applications	None	None	None	Due to P in the slurry Due to the limitations in N, it usually fits
P surplus	Low	Low	Low	with the recommendations
Mineral K fertilizer applications	None	None	None	Due to K in the slurry
Total number of treatment operations	4-7	4-7	4-7	3 sprayings and 1 time fertilizer as a minimum (winter barley). Maximum 6 sprayings and 2 times fertilizer (oilseed rape), therefore the average is between 4-
Deep tillage	Every year	Every year	Every year	Due to the benefits on weeds in
Inversion tillage	With inversion	With inversion	With inversion	particular
Superficial tillage in the crop (mechanical weeding)	None	1 per year	1 per year	Only relevant in OSR, but need graduation
Superficial tillage between crops (including false seedbed)	1-3 per year	1-3 per year	1-3 per year	Rather 1 than 3
Irrigation	High	High	High	Due to the soil type
Risk of water stress	Medium	Medium	Medium	Compared to other parts of Europe it is low, but compared to other Danish soils it is high
Fuel consumption at harvest	Medium	Medium	Medium	Need values? What is low? Which data are behind this?
Stubble/straw management	Exported or burnt	Not exported	Not exported	If there is money in the straw, or it is used for bedding, it is exported. Often it is chopped. Burning not allowed
Capacity of crop sequence to uptake N during the leaching period	Medium to low	High to medium	High to medium	Due to increasing use of catch crops

ENDURE - Deliverable DR2.16

Yield reduction due to system, other				Due to choice of other species. Spring	
than nutrition and pests or weeds	No	Medium	High	barley yields less than wheat and has lower nutritional value	
Habitat management	None	None	None	Not possible with the low amount of	
Habitat management quality	None	None	None	non-cropped area	
Pest control	High	High	High	All systems will provide the farmer with satisfactory control	
Number of hours	Medium to low	High to medium	High to medium	Increased time needed for monitoring etc.	
Risk of simultaneous operations, due to a limited number of suitable days	Medium	Low	Low	In the system based on winter crops, the risk is higher due to the fact that all operations have to be performed within a short period.	
Physical difficulty and disturbance	Low	Medium	Medium	More difficult in the more complex systems. Maybe not so different in these 3 cases	
Heavy metal contamination	None	None	None	Not relevant in these systems	
Proportion of gross margin due to main crop	High	High	High	All crops are considered main crops and no crops can be left out due to the need for fodder.	
Risk of pesticide residuals in product	None	None	None	D i d i i i DV	
Risk of mycotoxin contamination	None	None	None	Due to the strict approval system in DK	
Production risk	Medium	Low	Medium	The current practice is leading to uncontrollable problems in the future, the IS gives higher risk of production	
Pest pressure	Medium	Low	Low	The AS and IS should provide a better protection from the beginning	
Quantity of rain during late harvest	High to medium	High to medium	High to medium	Impossible to estimate, varies from one year to another	
Requirement for agricultural equipment	Low-none	Low-none	Medium	IS may require investment in equipment for mechanical weeding	
Risk of pesticide drift due to material	Low or no application	Low or no application	Low or no application	Use of low-drift nozzles and other factors is implemented in all arable rotations	
Farmers' and employees' knowledge and skills	Low	Medium	High	The IS requires increased awareness and knowledge by the farmer and employees	
	Affiliation to a network	Affiliation to a network	Affiliation to a network		
Affiliation to a farm support network	corresponding to the strategy	corresponding to the strategy	corresponding to the strategy	DAAS is capable of supplying the advice needed, also for starting farmers groups	
Availability of relevant advice for the strategy	High	High	High	where relevant	
Environmentally based direct subsidies in support of the strategy	None	None	None	There are currently no such subsidies	
Non-environmentally based direct subsidies in support of the strategy	None	None	None	available for the suggested systems	
Access to relevant technologies	Easy	Easy	Possible	Most operations, also in the IS systems can be made with already available material	
Delivery constraints	None	None	None	Most of the produced will be used for fodder on-farm	
Compatibility with technological/aesthetical requirements	High	High	High	It is assumed that all crops will meet the required standard needed for fodder, oil, etc.	
Compatibility with certification requirements	No certification requirement	No certification requirement	No certification requirement	Assuming that all crops are used on farm except WOSR which is assumed to be able to meet the requirements	
Valuation or devaluation of price due to crops in the crop sequence	Neutral	Neutral	Neutral	No change in the amount of cash crops	
Valuation or devaluation of price due to quality and certification requirements	Neutral	Neutral	Neutral	It is still assumed that the WOSR will meet the requirements needed. All other crops are used for fodder	
Reluctance/reservation of the farmer to adopt the strategy	None	Yes	Yes	The farmers use the CS because it gives them the highest profit (money and fodder)	
Social accessibility of product for consumers	Accessible	Accessible	Accessible	Really only a problem for WOSR	
Societal value of landscape	Indifferent	Indifferent	Good	Higher proportion of catch crops MAY improve the perception of the landscape	
Acceptability of the strategy by society	Indifferent	Indifferent	Indifferent	Society is never involved in the strategies	

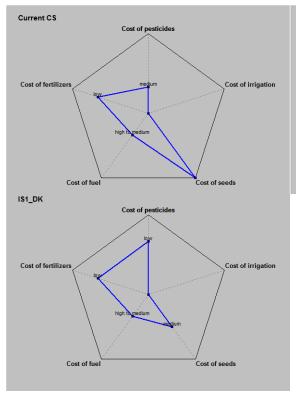


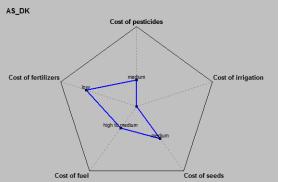

Analysis and discussion

In Figure 1 the overall sustainability of the three proposed systems is shown. The results indicate that the overall sustainability is lower for the Alternative and Innovative systems, compared to the Current system.

The reasons for these differences should be found in the underlying attributes forming the basis for the overall sustainability (the economical, social and environmental sustainability). These 3 attributes are shown in Figure 2. Apparently the suggested cropping systems have the same impact on the environmental and social sustainability. Looking at the input affiliated with the social sustainability, this is however not surprising, as they are supposed to be the same for all three systems.

Figure 1. Overall sustainability of the proposed Danish systems.


Of highest importance to the farmer is the economy and environment. These two aspects will therefore be analyzed separately in the following sections.



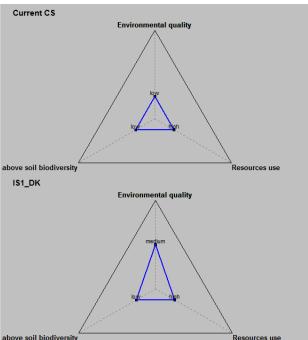
Economical sustainability

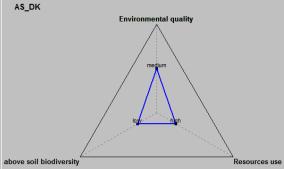
As shown in Figure 1, the overall sustainability is lower for the AS and IS systems compared to the current CS. By looking at Figure 2, the reason for this must be found in the economical sustainability, as the environmental and social sustainability are the same for the 3 systems. The economical sustainability is made up by the two attributes Profitability and Viability. The profitability is very low for all three rotations, whereas the viability is medium for the current system and low for the AS and IS systems. Looking at the two attributes separately reveals that even though the profitability apparently is very low for all three systems, the yield is higher for the CS and AS, and the selling price is higher for the CS system, due to the higher production value. In Figure 3, the costs (except labour) are compiled. The costs are more or less similar for the three systems, although the costs of pesticides are lower in the IS system compared to the other two systems and the costs of seeds higher in the alternative systems than the Current CS (due to increased amount of catch crops).

Figure 3. Comparison of costs between the three proposed systems.

Apparently, the reason why the profitability is the same for the three systems is the shifted balance between incomes and costs. What is saved in pesticides is lost in yield and vice versa. It is not clear why this is the case. Maybe the underlying attributes are not sensitive enough to include all aspects of the systems. However in practice, the current system has the overall advantage of providing the farmer with a higher and stable yield for feeding the pigs and thereby increasing the gross margin and the profit. The money is not only made in the field.

The viability of the systems is lower for AS and IS systems than for the Current CS. This is, according to DEXiPM, due to a higher investment capacity of the Current CS compared to the AS and IS systems. As mentioned in the input-table, this is a result of the increased production risk in the AS and IS systems due to the changes made to the cropping system. This could be visualized by including one crucial input factor in DEXiPM, and that is the overall gross margin of the farm. In Denmark an analysis of the farm economy shows that first and second year wheat always gives the highest profit to the farmer, even when it is corrected for the pre-crop value (e.g. winter oilseed rape is a better pre-crop than wheat). With spring barley giving a significantly lower profit, it requires convincing arguments, e.g. uncontrollable pest problems, regulation, lower availability of pesticides, etc. to





convince the farmer to change practice. An example under Danish conditions is the control of *Vulpia myuros* (Rat's-tail Fescue). It is not easy to control with the approved herbicides, and rapidly becomes a massive problem in winter crop-based cropping systems. This problem has convinced several farmers to change their crop rotation and management practice.

Environmental sustainability

Even though the proposed AS and IS systems should have a positive impact on the environment compared to the current CS, there are no differences in the environmental sustainability. Looking at the inputs, there are also not many differences. The pesticide use is, however, lower in the AS and IS systems compared to the current CS. In Figure 4, the three attributes making up the environmental sustainability are presented. It is evident that the environmental quality is the parameter making up the difference in the environmental sustainability, with the quality being higher in the AS and IS systems.

Figure 4. Comparison of the three parameters making up the environmental sustainability of the proposed cropping systems.

The environmental quality consists of 3 attributes, i.e. water quality, soil quality and air emissions. The only parameter showing any difference between the systems is the water quality, being higher for the AS and IS systems than for the current CS (data not shown). Water quality is again composed of 3 attributes, i.e. eutrophication potential, groundwater quality and aquatic ecotoxicity. Whereas both the AS and IS systems has a lower eutrophication potential than the current CS, only IS has a lower aquatic ecotoxicity (data not shown). The difference in eutrophication potential occurs due to a lower nitrate leaching from the AS and IS systems. This is due to the fact that the input termed "Capacity of crop sequence to uptake N during the leaching period" is differentiated between the three systems as a consequence of the positive impact of the catch crops. The difference in aquatic ecotoxicity originates from the difference in the input "Total pesticide TFI", which is one level lower for the IS system compared to the AS and CS. It is, however, surprising that the model is not able to simulate the rather large decrease in TFI between the CS and AS systems. The sensitivity of the model clearly needs to be improved, as the large decreases in total pesticide use have already been made in Denmark.

It should be noted that the inputs made for the comparison is to a large extent based on qualitative estimates. The results of the comparison should therefore not be used to choose one system over another, but rather to uncover relevant questions for the user. Therefore, the ability of DEXiPM as a tool to evaluate the performance of different crop rotations is limited. As long as the inputs are based solely on the perceptions of individual persons, and not data, it is difficult to draw reliable conclusions from the model.

Conclusion

The suggested alternative and innovative systems proposed are not very different from the current practice. This is a deliberate choice, as the primary goal of the Danish farmers is to run a profitable farm with the least risk to the production. Especially for the pig producers, it is of primary importance that the cropping system is capable of supplying sufficient food for the pigs. On average, spring barley yields 10% less than a winter wheat. Furthermore, the nutritional value of spring barley is lower than for wheat. Replacing spring barley with another crop is not possible, as the only two alternatives are spring wheat and oats, which both gives lower yields than spring barley.

Based on the inputs given, it is concluded that the proposed AS and IS systems are beneficial to the environment, more specifically the leaching of nutrients and the use of pesticides (only for the IS system). It is however also concluded that although the profitability remains the same for the three systems, the viability of the AS and IS systems decreases. Under the current financial situation in Europe, it is unlikely that the farmers want to/will be allowed to change their practice into a more risky production. The motivation to implement a more IPM-like approach should therefore come from another source (subsidies, changes in CAP instruments, pesticide taxes, regulations, uncontrollable problems, new markets (e.g. fibre or fuel crops), etc).

UK

Context

- **Site:** main predominantly arable area of England
- **Soil and climate:** clay and clay-loam with maritime climate
- **Regional land-use context:** predominantly arable

Current system

- **Crop sequence**: winter wheat winter wheat winter oilseed rape
- ▶ Crop protection strategy: pesticides and cultural control
- Main pest risk: grass weeds especially black grass/bromes (all crops), aphids / virus (WW/WOSR), flea beetle and pollen beetle (WOSR), slugs, pigeons, fungal diseases, especially Septoria (resistance)/yellow rust, phoma/light leaf spot/sclerotinia on OSR.
- **Expected yield given the context**: national average or above

✗ Alternative system

Proposed crop sequences for AS

Improving environmental sustainability, spreading the workload, black grass containment, better disease and pest management by reducing presence of cereals in rotation, breaking 'green bridge' between cereals (take-all, virus), and more years between OSR crops:

Rotation I, four-year, high proportion of first wheat crops:

winter wheat spring beans winter wheat winter oilseed rape

Rotation II, five-year, more spring crops:

winter wheat spring beans winter wheat spring milling wheat / spring malting barley winter oilseed rape

> Innovative system 1

Proposed crop sequences for IS1

Further improving environmental sustainability and potential for spreading the workload, potential for fallow and/or increased proportion of spring-sown crops for increased black grass containment and better disease and pest management.

Rotation III, five-year, wider choice of spring crops, option of fallow:

winter wheat

spring beans (or other non-brassica dicot spring crop)

winter wheat

spring milling wheat / spring malting barley / fallow

winter oilseed rape

Rotation IV, four-year, smaller proportion of first wheat crops, higher proportion and wider choice of spring crops, option of fallow:

winter wheat

spring beans (or other non-brassica dicot spring crop) spring milling wheat / spring malting barley/ fallow

winter oilseed rape

Please note that the AS and IS1 systems are all presented in details in Appendix A.

LIST OF MAJOR TOOLS USED FOR PESTICIDE REDUCTION IN THE AS SYSTEM FOR THE UK

System-wide tools

- 1. Crop sequence:
 - Introduction of spring crops and greater taxonomic variety of cropping for pest management particularly containment of grass weeds, especially black grass. Provide overwinter stubbles for predators of invertebrate pests and weed seeds, including birds. Break 'green bridge' for cereal pests and diseases.
 - Lengthening the rotation: more years between OSR crops to help disease control
- 2. Pesticide targeting and resistance management:
 - Ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems (implementation of available tools).
- 3. Tillage:
 - Minimize tillage and chop straw wherever possible to conserve natural enemies associated with soil and to conserve energy
 - Consider ploughing for grass weed management before a second cereal
 - Before spring crops plough if necessary in spring (in autumn on heavy land) to create seedbed and to control weeds.

- 4. Habitat management for conservation biological control, providing non-crop refugia and resources for natural enemies of invertebrate pests:
 - Field scale:
 - provide overwinter stubbles,
 - minimize tillage,
 - beetle banks,
 - wild flower margins,
 - grassy margins,
 - hedges.
 - Landscape scale:
 - maintain spatial and temporal diversity of cropping;
 - rotations including an entomorphilous crop (e.g. WOSR, spring beans);
 - diversity of non-crop areas, e.g. woodland, game cover;
 - high connectivity of non-crop habitats to facilitate movement of natural enemies.

Tools for different pest groups

Weed management:

- Use higher seed rates and cultivars with strong competitiveness where weeds are problematic
- Spot mapping and targeting of weeds

Disease management:

• Use of resistant cultivars

Invertebrate pest management:

- Habitat management for conservation biological control (see above)
- Minimize tillage to conserve natural enemies
- Use of resistant cultivars
- Plough for slug control

LIST OF MAIN DIFFERENCES BETWEEN AS AND IS1 FOR THE UK

- Widening the choice of dicot break crops (e.g. peas, linseed, other minor crops) to diversify crop taxa, reduce pest pressure and foster diversity of natural enemies.
- Option of increasing the proportion of break crops in the rotation.
- Option of introducing a fallow where management of grass weeds is particularly difficult.
- Drilling OSR into wide-rows (~50 cm) to minimize tillage and enable:
 - inter-row weed management (mechanical weeding where herbicide resistance is a problem, or targeted herbicide)
 - targeted nutrient application to avoid fertilizing weeds
 - potential for targeted applications of other pesticides
- GPS controlled traffic system to save fuel and carbon emissions, reduce soil compaction and crop damage
- GPS controlled pesticide applications for accurate pesticide targeting and stewardship, reducing TFI
- Trap cropping for pest management in oilseed rape
- Improved and new decision support systems
- New resistant crop cultivars

TFI ANALYSES ON AS AND IS1 SYSTEMS

Derivation of TFIs and TFI reductions

The baseline for the UK study is practice in England in 2006. TFIs for CS are calculated from Pesticide Usage Survey (PUS) 2006 data for England supplied by The Food and Environment Research Agency (Fera), or are estimated from PUS data for 2006. TFIs for AS and IS1 rotations are calculated according to TFI reductions estimated to be associated with the practices proposed for each system. TFI reductions are estimated on the basis of expert knowledge and, for insect pests, PUS data and Crop Monitor data for 2006 (Central Science Laboratory and Home Grown Cereals Authority). These estimates are itemized in the 'Crop protection strategy' tables for the UK in Appendix A (N.B. the percentage reductions are not additive but cumulative; they are applied successively to the TFI associated with CS values to produce the figures given in Table 15).

Estimates of TFI reductions are intended to be conservative. For example, although there is good evidence for the influence of habitat provision in the landscape on numbers of natural enemies there is much less data on the effects on pest numbers and crop damage. This effect is therefore conservatively estimated as a 10% reduction. The effects of changes in crop sequence and landscape are estimated but no additional allowance is made for any cumulative effect over time that might be expected. Seed dressings are not included in this study. The recent introduction of neonicotinoid insecticide seed dressings may allow further reductions in TFI of insecticide sprays.

Note that in IS1 it is expected that fallow would be employed only when grass weed management and/or resistance is an urgent problem. For this reason the baseline herbicide use for fallow fields is estimated to be two total herbicides.

Table 15. TFIs for all pesticide groups for each crop included in the UK current (CS) and proposed alternative (AS) and innovative (IS1) systems .

System	Crop	All pesticides	Herbicide	Insecticide	Fungicide	Molluscicide	PGR*
CS	W. wheat	6.75	2.44	0.96	2.26	0.12	0.97
	S. wheat	2.36	1.27	0.20	0.59	0.00	0.30
	S. barley	2.80	1.51	0.13	1.01	0.01	0.14
	S. beans	4.77	1.73	1.89	1.15	0.01	0.00
	WOSR	5.78	2.27	1.10	2.12	0.30	0.00
	Fallow	2.00	2.00	0.00	0.00	0.00	0.00
AS	W. wheat	5.60	1.73	0.59	2.23	0.07	0.97
	S. wheat	1.72	0.72	0.14	0.56	0.00	0.30
	S. barley	2.01	0.86	0.05	0.96	0.01	0.14
	S. beans	3.60	1.21	1.45	0.93	0.01	0.00
	WOSR	3.92	1.76	0.17	1.81	0.18	0.00
IS1, no	W. wheat	4.92	1.65	0.50	1.78	0.07	0.92
fallow	S. wheat	1.46	0.69	0.05	0.45	0.00	0.29
	S. barley	1.77	0.82	0.05	0.76	0.01	0.13
	S. beans	2.75	1.15	0.76	0.84	0.01	0.00
	WOSR	2.31	1.52	0.13	0.48	0.18	0.00
IS1 with	W. wheat	4.92	1.65	0.50	1.78	0.07	0.92
fallow	S. wheat	1.46	0.69	0.05	0.45	0.00	0.29
	S. barley	1.77	0.82	0.05	0.76	0.01	0.13
	S. beans	2.75	1.15	0.76	0.84	0.01	0.00
	WOSR	2.30	1.52	0.13	0.48	0.17	0.00
	Fallow	1.70	1.70	0.00	0.00	0.00	0.00

^{*}PGR = Plant growth regulator

Table 16. Reduction in Treatment Frequency Index for UK proposed alternative (AS) and innovative (IS1) cropping systems in comparison with the current (CS) cropping system.

									rop sequence ange	Effect of croplus change	
Rotation no.	System	No. years	Year 1	Year 2	Year 3	Year 4	Year 5	Mean TFI p.a.	% change in TFI p.a.	Mean TFI p.a.	% change in TFI p.a.
-	Current	3	ww	WW	WOSR			6.4		6.4	
I	AS	4	ww	S Beans	ww	WOSR		6.0	-6	4.7	-27
П	AS	5	ww	S Beans	ww	S Wheat	WOSR	5.3	-18	4.1	-36
II	AS	5	ww	S Beans	ww	S Barley	WOSR	5.4	-16	4.2	-35
III (S)	IS1	5	ww	S Beans	ww	S Wheat	WOSR	5.3	-18	3.3	-49
III (S)	IS1	5	ww	S Beans	ww	S Barley	WOSR	5.4	-16	3.3	-48
III (F)	IS1	5	ww	S Beans	ww	Fallow	WOSR	5.2	-19	3.3	-48
IV (S)	IS1	4	ww	S Beans	S Wheat	WOSR		4.9	-24	2.9	-56
IV (S)	IS1	4	ww	S Beans	S Barley	WOSR		5.0	-22	2.9	-54
IV (F)	IS1	4	ww	S Beans	Fallow	WOSR		4.8	-25	2.9	-55

DEXIPM ANALYSES ON UK AS AND IS1 SYSTEMS

Current System (CS): W. wheat – W. wheat – W. oilseed rape

Alternative sytem (AS): W. wheat -S. beans -W. wheat -W. oilseed rape

Innovative system (IS1): W. wheat – S. beans – W. wheat – Fallow – W. oilseed rape

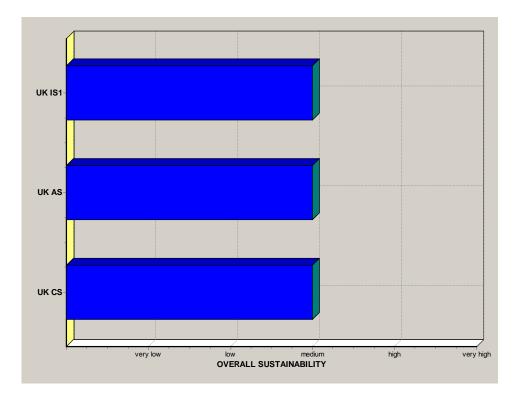
Context of the analysis

For the DEXiPM comparison of the systems, the farm is assumed to be an arable farm in the east of England with a clay/clay-loam soil type. Leaching risk is high to medium and runoff risk is medium due to the high rainfall in the UK.

Inputs to DEXiPM

The following table presents the choice of DEXiPM input settings used for the comparison of UK systems. There are rather few differences between the inputs of the three systems as reductions in pesticide use depended to a significant extent on the choice of crop sequence. The inputs chosen reflect the current agricultural practices and those that would be acceptable to UK growers in the future to maintain productivity and profit.

Option	Current system	Alternative system	Innovative system	Comment
Leaching risk (soil and climate)	High to medium	High to medium	High to medium	Fixed for comparison
Runoff risk due to context	Medium	Medium	Medium	Fixed for comparison
Field erosion risk due to context	Low	Low	Low	Fixed for comparison
Hydromorphic soil	No	No	No	Fixed for comparison
Potential yield	Very high	Very high	Medium to high	Fixed for comparison
B : 1:	Not favourable to	Not favourable to	Not favourable to	Assumed that the area is mainly
Regional intensification	biodiversity	biodiversity	biodiversity	farmland
Availability of uncropped land	Very low	Very low	Low to medium	Intensive agricultural area, fallows and uncropped stubbles introduced
Non-productive areas	Low proportion	Medium proportion	Medium proportion and high connectivity	Intensive agricultural area with landcape management
Average market price	Medium to high	Medium to high	Medium to high	Assuming prices remain stable
Labour hourly wage	High to medium	High to medium	High to medium	The wages in the UK are generally high compared to the rest of EU
Local availability of water for irrigation	Medium	Medium	Medium	Little use of irrigation
Financial security of the farm	Medium	Medium	Medium	Needs to remain the same
Number of crops	Medium to low	Medium to low	Medium to low	See the description of the systems
Proportion of summer, late-harvest crops	Very low	Medium to low	Medium	Currently none, would increase in AS and IS
Crop type	1 type	2 types	3 types	Winter, spring crops and fallow
Crop effect on pollinators	Little favourable	Favourable	Favourable	Benefit of to oilseed rape, increasing with introduction of beans
Additional seed cost of crop species or cultivars	Moderate	Moderate	Moderate	Standard seed prices
Sowing density	Medium	Medium	Medium	Will not be changed significantly unless grass weed problem
Soil cover	High	High	High	In all rotations soil cover is high
TFI of insecticide	Medium	Low	Low	For the CS, actual data were available.
TFI of fungicide	High	Medium	Low	Other data are estimated based on expert
TFI of herbicide	High	Medium	Medium	knowledge
Total Pesticide TFI	High to medium	Medium to low	Medium to low	ŭ
Pesticide mobility	High to medium	High to medium	High to medium	Worst case due to sulfonylureas
Pesticide eco-toxicity	Medium to low	Medium to low	Medium to low	Due to the strict approval system
Soil cover at pesticide application	Medium	Medium	Medium	Applications throughout year
Mineral N fertilizer applications	Medium	Medium	Medium	Required to maintain yield
Organic N fertilizer applications	None	None	None	
Organic amendments	None	None	None	
Coverage of crop Nitrogen requirement	Balanced	Balanced	Balanced	Only use as necessary
Mineral P fertilizer applications	Medium	Medium	Medium	Usually with N
P surplus	Low	Low	Low	Only applied as required
Mineral K fertilizer applications	Low	Low	Low	Only applied as required


Total number of treatment operations	8 or more	4-7	4-7	As few as possible with tank mixing
Deep tillage	Less than half	Less than half	Less than half	Due to the benefits on weeds in
Inversion tillage	With inversion	With inversion	With inversion	particular
Superficial tillage in the crop (mechanical weeding)	None	None	1 per year	Only relevant in OSR
Superficial tillage between crops (including false seedbed)	1-3 per year	1-3 per year	1-3 per year	Rather 1 than 3
Irrigation	None	None	None	Plenty of rain in the UK
Risk of water stress	Low	Low	Low	Compared to other parts of Europe it is low
Fuel consumption at harvest	Medium	Medium	Medium	As efficient as possible
Stubble/straw management	Not exported	Not exported	Not exported	. Often it is chopped. Burning not allowed
Capacity of crop sequence to uptake N during the leaching period	Medium to low	Medium to low	Medium to low	
Yield reduction due to system, other than nutrition and pests or weeds	No	Medium	Medium	Due to choice of other species. Spring crops yield less than winter wheat
Habitat management	None	Low increase	Low increase of % non-productive areas and increase of connectivity	Farmers keen to be green
Habitat management quality	Favourable to flora	Favourable to flora	Favourable to flora	
Pest control	High	High	High	All systems will provide the farmer with satisfactory control
Number of hours	Medium to low	Medium to low	Medium to low	AS and IS1 aim to spread workload
Risk of simultaneous operations, due to a limited number of suitable days	Medium	Low	Low	AS and IS1 aim to spread workload
Physical difficulty and disturbance	Medium	Medium	Medium	AS and IS1 aim to spread workload
Heavy metal contamination	None	None	None	Not relevant in these systems
Proportion of gross margin due to main crop	High	High	High	All crops are considered main crops
Risk of pesticide residuals in product	Medium to low	Medium to low	Medium to low	Approval existem with limits in the LIV
Risk of mycotoxin contamination	Medium to low	Medium to low	Medium to low	Approval system with limits in the UK
Production risk	Low	Low	Low	Grass weeds the main problem, AS and IS1 provide control phase
Pest pressure	Medium	Medium	Medium	Pests remain, but should get better control
Quantity of rain during late harvest	High to medium	High to medium	High to medium	Impossible to estimate, varies from one year to another
Requirement for agricultural equipment	High	High	High	Standard machinery
Risk of pesticide drift due to material	Medium	Medium	Medium	Sprays still required, even under AS and IS1
Farmer and employees knowledge and skills	High	High	High	UK farmers well educated and efficient
Affiliation to a farm support network	Affiliation to a network corresponding to the strategy	Affiliation to a network corresponding to the strategy	Affiliation to a network corresponding to the strategy	All UK growers use professional advice when making decisions since they cannot afford not to.
Availability of relevant advice for the strategy	High	High	High	
Environmentally based direct subsidies in support of the strategy	High	High	High	Various government-funded schemes in
Non-environmentally based direct subsidies in support of the strategy	Medium	Medium	Medium	place
Access to relevant technologies	Easy	Easy	Possible	Most operations, also in the IS systems can be made with already available knowledge/material
Delivery constraints	None	None	None	Efficient transport network available
Compatibility with technological/aesthetical requirements	*	*	*	
Compatibility with certification requirements	High or no certification	High or no certification	High or no certification	
Valuation or devaluation of price due	requirement Neutral	requirement Neutral	requirement Neutral	No change in the amount of cash crops
to crops in the crop sequence	1104141	1 toutiui	1 Cattai	The shange in the amount of easir crops
Valuation or devaluation of price due to quality and certification requirements	Neutral	Neutral	Neutral	No change in the amount of cash crops
Reluctance/reservation of the farmer to adopt the strategy	None	*	*	As and IS1 designed to be "acceptable"
Social accessibility of product for consumers	Accessible	Accessible	Accessible	Really only a problem for WOSR
Societal value of landscape	Indifferent	Good	Good	
Acceptability of the strategy by society	Indifferent	Acceptable	Acceptable	Farming perceived to be less environmentally damaging

Analysis and discussion

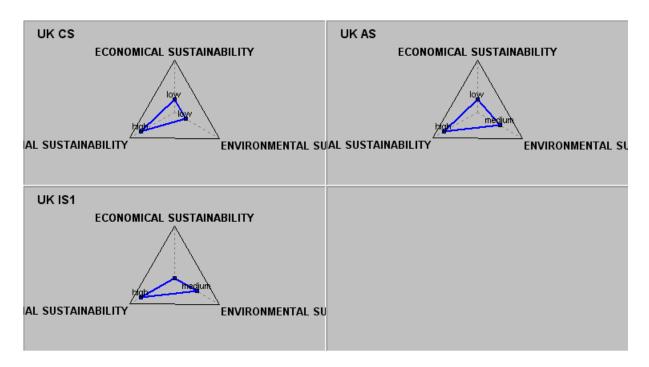
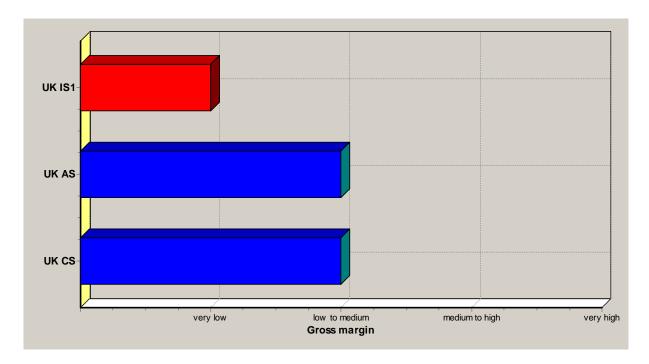

In Figure 5, the overall sustainability of the three proposed systems for the UK is shown. The results indicate that the overall sustainability remains the same for the Alternative and Innovative systems, compared to the Current system with all three being assessed to give a 'medium' level of overall sustainability. At first sight, this result might appear to indicate that the proposed AS and IS systems had succeeded in maintaining productivity and profitability despite a reduction in the proportion of winter wheat in the rotation and the introduction of lower yielding spring crops, an outcome that would be very acceptable to the agricultural industry. However, more detailed analysis highlights differences between the systems in the ways that the overall level of sustainability was achieved (Figure 6). Whereas the social sustainability of each of the three systems was consistently assessed as 'high', DEXiPM suggested that the environmental sustainability improved from low (CS) to medium (AS & IS) and that this was counterbalanced by a decline in economic sustainability from low (CS & AS) to very low (IS1) (Figures 6 and 7). Thus a reduction in the environmental footprint of the industry appears to have been achieved at the expense of profitability and (probably) productivity, a change that would have important implications for policymakers as well as farmers.

Figure 5. Overall sustainability of the UK Current System (CS) and for the proposed Alternative System (AS) and Innovative System (IS1).


Figure 6. Comparison of economical, social and environmental sustainability of the UK Current System (CS) and the proposed Alternative System (AS) and Innovative System (IS1).

Economic sustainability

A reduction in gross margin was detected by DEXiPM for IS1 (Figure 7) but probably also occurred to some extent in the AS system. This reduction in profitability must be concomitant with the introduction of less profitable and/or less productive spring crops and with the use of a fallow in the IS1, as there was not an increase in costs (Figure 8). Such a reduction would be of great concern to growers and advisors, but it should be noted that the use of an IS1 rotation with a fallow is proposed only for sites where there are significant problems with herbicide-resistant grass weeds, in which case the loss would be significantly countered by the advantages that this IS1 system brings for grass weed management. An IS1 system with a fallow has been chosen for DEXiPM analysis here as an example that is very different from UK CS but other UK IS1 options without fallow have been suggested for sites without severe herbicide-resistance problems (see 'Proposals of AS and IS1 for each country' above).

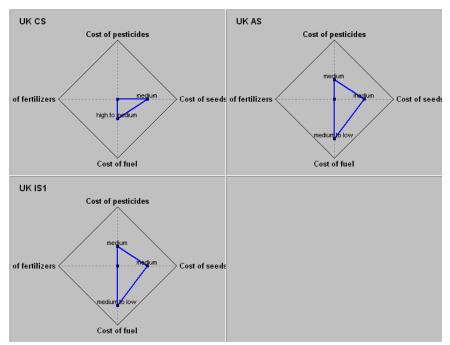


Figure 7. Comparison of assessment of gross margin of the UK Current System (CS) and the proposed Alternative System (AS) and Innovative System (IS1).

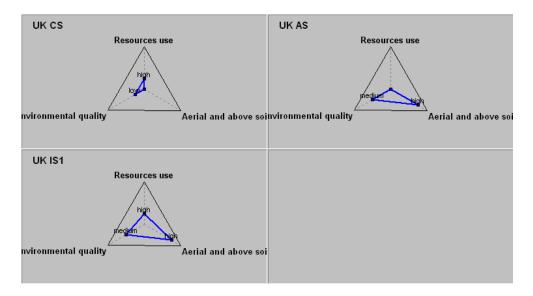
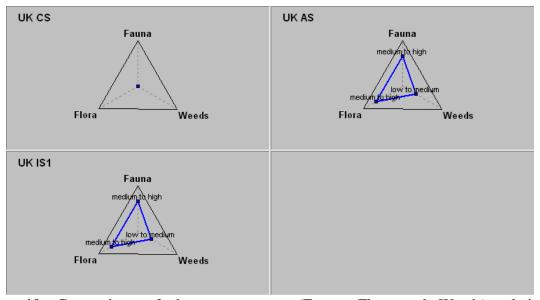

Analysis of some production costs shows that the proposed AS and IS1 systems carried similar costs to each other but both achieved reductions in fuel and pesticide costs compared to CS (Figure 8). The cost of pesticide, rated as high under the CS, was reduced to medium in the AS and IS1 systems due to the reduced use of all pesticides (27% and 48% TFI reductions for AS and IS1, respectively). The biggest TFI savings were achieved in herbicides and fungicides. The cost of fertilizers remained high in order to maintain yield under all three systems. The assessment for the cost of fuel decreased from 'high to medium' for the CS to 'medium to low' for both the AS and IS1, presumably because of the lower number of passes through the crop/system as pesticide usage levels were reduced. The cost of seeds remained constant. Unlike the Danish system, irrigation costs are not an issue in the UK and this was not included in the analysis.

Figure 8. Comparison of costs between the UK Current System (CS) and the proposed Alternative System (AS) and Innovative System (IS1).

Figure 9. Comparison of three parameters (Resources use, Environmental quality and Aerial and above soil biodiversity) relating to environmental sustainability between the UK Current System (CS) and the proposed Alternative System (AS) and Innovative System (IS1).


Environmental sustainability

diversifying crop protection

The DEXiPM assessment suggested that both UK AS and UK IS1 systems achieved some environmental benefits compared to the CS. The environmental quality rating improved from 'low' for the CS to 'medium' for both the AS and IS1 systems, presumably because of the reduction in pesticide use and associated reduction in sprayer passes through the crop/system. Further analysis with the DEXiPM tool suggests that for the CS and two proposed AS and IS1 systems, water quality and soil quality remain the same (both rated 'low to medium') but that reduced air emissions (falling from 'High to medium' to 'Medium to low') account for the

improved environmental quality. Both the AS and IS1 reduced direct CO₂ emmissions and the reduced TFI associated with each system also reduced volatization of pesticides.

DEXiPM suggested that the largest difference between the three UK systems in terms of environmental sustainability was achieved in 'Aerial and above ground biodiversity', rated as 'very low' under CS but 'high' for both the AS and IS1 systems. Figure 10 indicates how the proposed systems were assessed to be beneficial to flora, fauna and weeds (presumably diversity of the seed bank). All three parameters were rated 'very low' under CS, but all increased with TFI reductions and changes in practices associated with the AS system and further improvements under the proposed IS1 system.

Figure 10. Comparison of three parameters (Fauna, Flora and Weeds) relating to Environmental Quality between the UK Current System (CS) and the proposed Alternative System (AS) and Innovative System (IS1).

Social sustainability

A high rating for 'social sustainability' was maintained in all three systems (Figure 6). The need for farmers to spread the workload is an important driver of rotations and the diversification into spring/other crops in UK AS & IS1 systems is reflected in DEXiPM's assessment of 'operational difficulties' as 'medium to low' (CS) and 'very low' (AS and IS1). Although 'work hardness' was rated as 'medium to low' for all three systems, the medium to low 'complexity' rating for current practices was reduced to very low for both the AS and IS1 proposed systems. The introduction of spring crops and possibly a fallow (suggested by growers and advisors) was a key factor in terms of 'farm manageability'.

Conclusion

diversifying crop protection

A major concern to UK growers and their advisors aired during consultation in advance of this exercise was the maintenance of current levels of production and profit. With this in mind, AS and IS1 systems were proposed that represented relatively modest changes to the current cropping system rather than radical redesigns. An important aim of the proposed systems was to allow management of grass weed problems and to introduce genetically different crops to help combat risk of all pests. The proposed crop sequences were also designed to spread the workload on the farm. Many of the differences between the systems were subtle or were variations on current practices and this, as might be expected, was often

reflected in the ratings given by DEXiPM to the three systems. Environmental benefits were achieved, associated with pesticide reductions, reduced fuel costs and emissions, spring cropping and fallows, but they were accompanied by some compromise to the economic sustainability of the IS1 system. Social sustainability was maintained.

As a framework for structuring comparison of the sustainability and performance of the CS, AS and IS1 systems, DEXiPM analysis provided a synthesis of expert assessments relating to the environmental and economic sustainability of the proposed sytems. The results obtained were consistent with expectation based on that expert opinion. As such, DEXiPM assessments were a test of the thinking behind the proposals for the three systems. While DEXiPM cannot replace a full and objective socio-economic and environmental impact assessment, it is a worthwhile preliminary to such an analysis.

France

One AS and two IS1 are proposed, corresponding to three current situations with different context and pre-requisite. The AS and IS1 systems are all presented in details in Appendix A.

Bassin Parisien

CONTEXT

- **Site:** France, Bassin Parisien
- ➤ Soil and climate: loamy, deep soils (no risk of water stress, medium leaching risk, medium erosion risk), degraded oceanic climate
- **Regional context:** intensive, low proportion of non-productive area
- **Specificity of the farm where the system is proposed:** industrial crops

CURRENT SYSTEM

Crop sequence: sugarbeet-winter wheat-winter oilseed rape-winter wheat **Crop protection strategy**: pesticides (TFI 7.2 year⁻¹, Table 17), genetic

Main pest risk: spring weeds in sugar beet, autumn weeds in winter crops; aerial diseases on

wheat

Expected yield given the context: high (Table 17).

Other crop management specificity:

- X Superficial tillage: no mechanical weeding and no false seedbed
- > No intermediate crop
- ➤ Deep tillage: higher frequency in comparison with IS
- Sowing density: high (lower in IS)
- ➤ Mineral fertilizers: high for N (lower in IS)

Table 17. Estimated TFI of current systems (ha⁻¹ year⁻¹) (source: Ecophyto R&D report Guichard *et al.* 2009) and estimated potential yields of crop (Source: Persyst *Champagne* and *Poitou Charentes*, Guichard, 2008).

	Bassin Parisien	Poitou Charentes	Bourgogne
TFI Herbicide	2.4	2.1	2.2
TFI Fungicide	2.1	1.5	2.1
TFI Insecticide	1.9	1.6	1.7
Total TFI	7.2	5.8	7.1
Yields	WWh: 7.5-9.5 t ⁻¹ ha ⁻¹	5.3-6.9 t ⁻¹ ha ⁻¹ WWh	5.3-6.9 t ⁻¹ ha ⁻¹ WWh
	WOSR: 3.3-4.5 t ⁻¹ ha ⁻¹	2.5-3.4 t ⁻¹ ha ⁻¹ WOSR	$2.5-3.4 t^{-1} ha^{-1} WOSR$
	Sugarbeet: 80-105 t ⁻¹	$5.8-7.4 t^{-1} ha^{-1} WB$	5.8-7.4 t ⁻¹ ha ⁻¹ WB
	ha ⁻¹		

INNOVATIVE SYSTEM

Proposed crop sequence for IS prototype:

sugarbeet-winter wheat-(mustard)-hemp-winter wheat-winter oilseed rape-winter wheat-(mustard)

Main crop protection principles:

- Extending and diversifying crop rotation: competitive crops are added (weeds), the frequency of a given crop is lowered (disease)
- Diversifying sowing periods by shifting sowing dates (early/late sowing dates): impact on weeds (allow false seedbed on wheat sown later, competitiveness of WOSR sown earlier is increased against weeds), on disease (e.g. WOSR sown earlier is less susceptible to phoma) and on insects (e.g. autumn aphids on wheat sown later, winter flee beetle (psylliodes chrysocephala), tenthredinidae and slugs on WOSR sown early)
- X Superficial tillage: mechanical weeding and false seedbed.
- > Systematic intermediate catch crop when spring crops: competitiveness against Autumn weeds.
- ➤ Odd number of deep tillage between two successive cereals: the seedbank is buried when the cereal is sown.
- **X** Use of resistant cultivars.
- ➤ WOSR cultivar mixture with 10% early and taller WOSR cultivars (the hypothesis is that pollen beetles are attracted by this cultivar, the 90% plants remaining might be less attacked; Valantin-Morison *et al.*, 2006a)
- X Straws chopped and buried: slugs
- ➤ Decrease sowing density, N fertilizer amounts

Possible positive impact:

- ➤ Intermediate crop: less N on crops, reduction of NO3 leaching
- Straws buried: increase soil organic matter content (long term effect)

Possible negative impacts:

- Mechanical weeding-superficial tillage between crops: energy and time cost
- Late sowing (cereals): risk of unsuitable sowing conditions, reduction of yield
- ➤ Extending rotations: lower frequency of cash crops, delivery constraints for some crops (hemp)
- ➤ Intermediate crop: risk to increase slugs
- No growth regulator: lodging problems (but N fertilization is decreased)
- ➤ Introduction of hemp: risk of broom rape and sclerotinia

Poitou Charentes

CONTEXT

- **Site:** France, *Poitou Charentes*
- ➤ Soil and climate: limestone plateau, shallow soils (risk of water stress, high leaching risk, low erosion risk), oceanic climate
- **Regional context:** intensive
- ➤ Specificity of the farm where the system is proposed: farm area > 100ha: it is not always possible to delay the winter wheat sowing date (risk of simultaneous operations), availability of tools for mechanical weeding, no irrigation.

CURRENT SYSTEM

Crop sequence: winter oilseed rape-winter wheat-winter barley

Crop protection strategy: pesticides (TFI=5.8 year⁻¹, Table 17), genetic

Main pest risk: weeds: Galium aparine, wild oats (Avena fatua), Geranium (cereals), Ammi majus (sunflower); insects: stem weevil, pollen beetle (WOSR), aphids (spring: WOSR, autumn: WWh); diseases: septoria on cereals, sclerotinia on WOSR

Expected yield given the context: medium to high (Table 17)

Detailed crop management specificity:

- X Superficial tillage: no mechanical weeding and no false seedbed
- ✗ No intermediate crop
- Deep tillage: higher frequency in comparison with AS
- X Sowing density: high (lower in AS)
- ➤ Mineral fertilizers: high for N (lower in AS)

ADVANCED SYSTEM

Proposed crop sequence for AS prototype:

winter oilseed rape-winter wheat-winter barley-(intermediate legumes)-sunflower-winter wheat

Main crop protection principles:

- ➤ Diversifying crop sequence and sowing periods by introducing spring crops and shifting sowing dates: non-specialized weed flora
- X Systematic intermediate catch crop when spring crops: autumn weeds
- Mechanical weeding and false seedbed, deep tillage when necessary
- ➤ Diversifying sowing periods by shifting wheat sowing dates when it is possible: impact on weeds (allow false seedbed on wheat sown later) and on insects (e.g. autumn aphids). The delay in wheat sowing date is not systematic.
- Sowing density: double row spacing for WOSR (mechanical weeding)
- ➤ Use of resistant cultivars, wheat cultivar mixture
- ➤ WOSR cultivar mixture with 10% early and taller WOSR cultivars (the hypothesis is that pollen beetles are attracted by this cultivar, the 90% plants remaining might be less attacked; Valantin-Morison *et al.*, 2006a)
- X Straws chopped and buried: slugs
- > Decrease sowing density, N fertilizer amounts

Possible positive impact:

- ➤ Intermediate crop: less N application on crops, reduction of NO3 leaching
- X Straws buried: increase soil organic matter content (long-term effect)

Possible negative impacts:

- ➤ Mechanical weeding-superficial tillage between crops: energy and time cost
- * Late sowing (cereals): risk of unsuitable sowing conditions, reduction of yield

- **X** Extending rotations: lower frequency of cash crops
- ➤ Intermediate crop: risk to increase slugs
- No growth regulator: lodging problems (but N fertilization is decreased)
- > Wheat cultivar mixtures: possible problems to sell the production in France

Bourgogne

CONTEXT

- **Site:** France, *Bourgogne*
- **X Soil and climate:** limestone plateau, shallow soils (low hydric deficiency, high leaching risk, low erosion risk)
- **Regional context:** intensive, cattle livestock in surrounding farms in the region
- **Specificity of the farm where the system is proposed:** minimum tillage, availability of tools for mechanical weeding, no irrigation.

CURRENT SYSTEM

Crop sequence: winter oilseed rape-winter wheat-winter barley

Crop protection strategy: pesticides (TFI=7.1 year⁻¹, Table 17), genetic

Main pest risk: autumn emergence weeds (all crops), weevil, pollen beetle (WOSR), aphids (WW)

Expected yield given the context: medium to high (Table 17)

Detailed crop management specificity:

- X Superficial tillage: no mechanical weeding and no false seedbed
- ✗ No intermediate crop
- Deep tillage: no deep tillage (one mouldboard ploughing after alfalfa in the IS)
- X Sowing density: high (lower in IS)
- Mineral fertilizers: high for N (lower in IS)

INNOVATIVE SYSTEM

Proposed crop sequence for IS prototype:

winter oilseed rape-winter wheat-spring barley-alfalfa-alfalfa-winter wheat-(mustard)-sunflower-triticale

Main crop protection principles:

- ➤ Diversifying crop sequence and sowing periods by introducing spring crops and shifting sowing dates: non-specialized weed flora (enhanced for the IS in comparison with the AS)
- ➤ Increase the frequency of crops with high competitiveness against weeds (including alfalfa perennial crop)
- Diversifying sowing periods by shifting sowing dates (early/late sowing dates): impact on weeds (allow false seedbed on wheat sown later, competitiveness of WOSR sown earlier is increased, early sowing date for spring barley to increase competitiveness), on disease (e.g. WOSR sown earlier is less susceptible to phoma), on insects (e.g. autumn aphids on wheat sown later, winter flee beetle (psylliodes chrysocephala), tenthredinidae and slugs on WOSR sown early). Systematic late sowing date for winter wheat
- Landscape management: if possible, small fields (<10 ha), settlement of hedges or other non-productive areas, flowering strips for pollinators, refuges for natural enemies, turnip rape (*Brassica rapa*) on WOSR margins (to trap pollen beetle; Valantin-Morison *et al.*, 2006b)

- ➤ Mechanical weeding and false seedbed, deep tillage only after alfalfa (favour natural enemies)
- Use of resistant cultivars
- ➤ WOSR cultivar mixture with 10% early and taller WOSR cultivars (the hypothesis is that pollen beetles are attracted by this cultivar, the 90% plants remaining might be less attacked; Valantin-Morison *et al.*, 2006a)
- X Straws exported: slugs
- ➤ Use of Contans® each year (biological control) against sclerotinia
- Mercease sowing density, N fertilizer amounts

Possible positive impact:

- ✗ Intermediate crop (not systematic as before): less N application on crops, reduction of NO3 leaching
- ✗ limitation of green house gases emission (less N applications)
- X Landscape management: good perception by society
- ➤ Biodiversity (pollinators) : alfalfa, sunflower

Possible negative impacts:

- ➤ Mechanical weeding-superficial tillage between crops: energy and time cost
- * Late sowing (cereals): risk of unsuitable sowing conditions, reduction of yield
- ➤ Extending rotations: lower frequency of cash crops, delivery constraints for some crops (alfalfa, triticale)
- ➤ Intermediate crop: risk to increase slugs
- No growth regulator: lodging problems (but N fertilization is decreased)
- > Straws exported: limit soil organic matter content
- ➤ Biological control (Contans[®]): cost
- ➤ Landscape management: loss of productive area, crop mosaic reorganization

The context and current system in *Poitou Charentes* and *Bourgogne* are similar. It is therefore possible to compare the evolution between AS and IS based on the same CS. Main differences are the landscape management for the IS, the diversification of the crop sequence that is enhanced in the IS, the systematization delaying of sowing dates for wheat in the IS, the use of a biological control method in the IS, and the limitation of deep tillage (also linked with the specificity of the farm). These systems will be assessed together in the following part.

Assessment of systems

1/ Pesticides TFI¹

TFI values for French current systems correspond to those described in the Ecophyto R&D report (Ecophyto R&D report Guichard *et al.*, 2009) for the intensive cropping systems. A half-dose glyphosate treatment was applied between crops 2 years out of 3 for the WOSR-WWh-WB crop sequence (before wheat and barley) and 2 years out of 4 for the Sb-WWh-WOSR-WWh crop sequence (before sugar beet and wheat following WOSR).

D: applied dose in commercial product, DAp: approved/registered dose for the commercial product.

¹ Average pesticide Treatment Frequency Index of commercial products (and not active ingredient) across all crops in the cropping sequence, for fungicides, insecticides, herbicides, molluscicides, growth regulators and all other products used

 $TFI = \frac{1}{n} \sum_{t=1}^{t=T} \frac{D_t}{DAp_t}$ with n: number of years in the crop sequence, T: total number of pesticide treatments,

Concerning the AS and IS systems, TFI were calculated according to the detailed description of systems (in appendices). Most treatments were suppressed thanks to the use of alternative control methods (adaptation of sowing dates, use of resistant cultivars landscape management, etc.). Those methods were supposed to be efficient and estimations were quite optimistic. When treatments were maintained, TFI were calculated based on the estimation of the frequency of attacks of more problematic pests (regional data, Aubertot *et al.*, 2005). For example, it was estimated that the frequency of aphid attacks in autumn on the second wheat of the AS in *Poitou Charentes* was three years out of five, leading to a TFI of 0.6 on the crop for the corresponding insecticide. Similarly for the slugs on winter oilseed rape in the IS in *Bassin Parisien*, the frequency of attack was estimated at 1 year out of five, leading to a TFI of 0.2 on the crop for the corresponding molluscicide. When herbicides were applied on row, the TFI was estimated at 0.5 instead of 1. More generally, pesticides were applied at lower dose than in current systems (except for insecticides), where they were commonly applied at full dose.

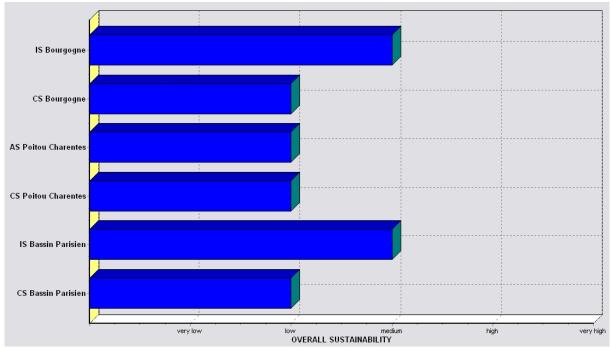
Table 18. Calculated TFI (ha⁻¹ year⁻¹) for the three current crop sequences and the corresponding AS and IS. WOSR: Winter Oilseed Rape, WWh: Winter Wheat, WB: Winter Barley, SB: Spring Barley, Sb: Sugarbeet, Sf: Sunflower, Tr: Triticale, Al: Alfalfa, H: Hemp.

Region	Bassin Parisi		Poitou Char	rentes	Bourgogne	•
System	CS	IS	CS	AS	CS	IS
Crop	Sb-WWh-	(Mustard)-	WOSR-	WOSR-	WOSR-	WOSR-
sequence	WOSR-	Sb-WWh-	WWh-WB	WWh-WB-	WWh-WB	WWh-SB-
	WWh	(mustard)-		(intermediate		Al-Al-
		H- WWh -		legumes)-Sf-		WWh -
		WOSR-WW		WWh		(mustard)-
						Sf-Tr
TFI	2.4	0.8	2.1	0.7	2.2	0.2
Herbicide						
TFI	2.1	0.7	1.5	0.8	2.1	0
Fungicide						
TFI	1.9	0.4	1.6	0.6	1.7	0.2
Insecticide						
Total TFI	7.2	1.9	5.8	2.2	7.1	0.4

Based on the hypothesis for TFI calculation, the TFI of AS and IS were significantly reduced in comparison with TFI of current systems (Table 18).

2/Multi-criteria assessment with DEXiPM

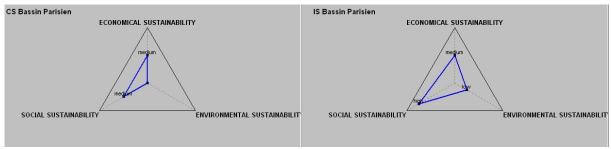
A detailed description of DEXiPM is available in the deliverable DR 2.14. Estimations of basic attributes for the assessment are based on the detailed description of cropping systems in appendices.


Assessment of current, advanced and innovative systems were performed using DEXiPM. These assessments allow a first view of the sustainability of systems proposed, but were also a way to discuss the reliability of the model, which is still under development.

Differences between systems are not high for the overall sustainability (Figure 11). Although both innovative systems proposed present a higher overall sustainability, the advanced system does not seem to improve the overall sustainability. These results are due to the fact that sustainability of cropping systems does not only depend on TFI but also on other aspects that are taken into account in the DEXiPM tool, such as nitrate leaching, air emissions, energy

consumption for the environmental part, costs of all inputs for the economical part, etc. It points out the importance of the multi-criteria assessment of systems. However, these results are also partly due to a lack of sensitivity of the upper attributes of DEXiPM to modifications of systems (basic attributes, such as TFI, fertilizers, tillage, etc.). This is the reason why we present results obtained with the other attributes within the tree.

Figure 11. Estimation of the overall sustainability of the three current systems (CS) described in three French regions (*Bassin Parisien*, *Poitou Charentes* and *Bourgogne*) and the corresponding advanced and innovative systems (AS, IS).


Even if current systems are described in two different regions, they are more or less the same (same crop sequence, similar crop management, same pedo-climatic context). We therefore present the results of AS for *Poitou Charentes* and IS for *Bourgogne* in parallel, to be able to compare the evolution between CS, AS and IS. The results for CS and IS in *Bassin Parisien*, corresponding to a different context, are presented separately.

Bassin Parisien

The overall sustainability in DEXiPM takes into account the economical, environmental and social sustainability. Whereas the economical sustainability remains the same between CS and IS (Figure 12), the environmental sustainability is improved by one class (from very low to low) as well as the social sustainability (from medium to high), explaining the difference in the overall sustainability (from low to medium).

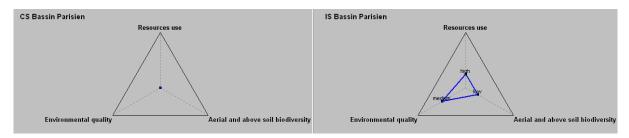


Figure 12. Estimation of the environmental, economical and social sustainability of the current system (CS) and the corresponding innovative systems (IS) described in the French region *Bassin Parisien*.

All the attributes of the environmental sustainability, environmental quality (water, soil and air), aerial and above soil biodiversity (fauna and flora) and resource use (water, land, energy and non-renewable fertilizers) are very low in the current system (Figure 13). The innovative system allows the improvement of the environmental quality by two classes (from very low to medium), mainly because of the lower amount of pesticides but also of nitrogen fertilizer (lower nitrate leaching and nitrous oxide N2O emissions risk). The resource use is also improved because of a lower energy use due to a lower amount of nitrogen and thus of indirect energy consumption in the IS. Finally, the aerial and above soil biodiversity is better. Moreover, in the IS, the weed diversity is improved because of the diversification of the crop sequence and of the lower use of herbicides, but the weed abundance is the same as in the CS. It can be concluded that alternative methods to control weeds are efficient to decrease weed abundance. The fauna diversity (soil natural enemies, aerial natural enemies, pollinators) is also improved, particularly aerial natural enemies because of a lower use of pesticides and the improvement of flora diversity. Even if the environmental sustainability differs by one class (in comparison with the CS), the analysis of attributes within the tree shows that the IS significantly improve the environmental sustainability. These weak differences between the two systems despite the large modifications of the cropping systems are due to the low sensitivity of the upper attributes of DEXiPM

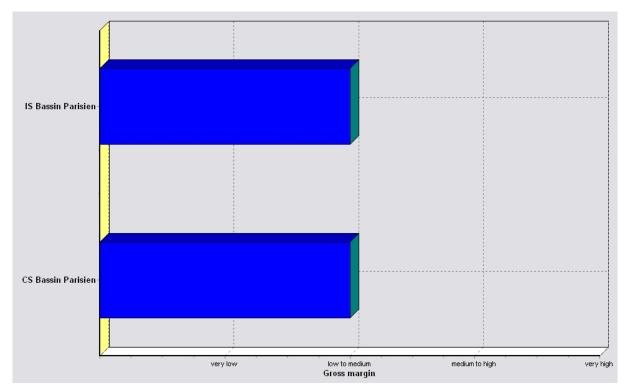
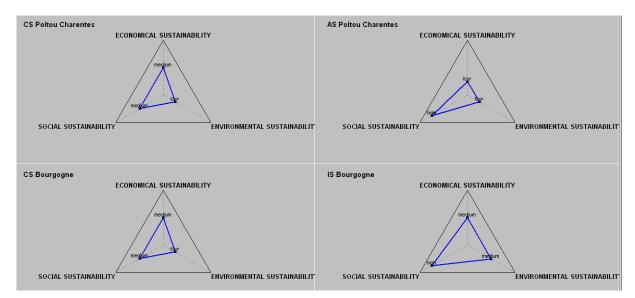


Figure 13. Estimation of the environmental sustainability of the current system (CS) and the corresponding innovative systems (IS) described in the French region *Bassin Parisien*.

The estimation of the gross margin remains the same between both systems (Figure 14), despite a lower yield for the IS (from high for the CS to medium for the IS) leading to a lower production value (from medium to high for the CS to low to medium for the IS). However, this is compensated by a lower production cost for the IS (from high to medium for the CS to medium to low for the IS), mainly because of a lower cost of pesticide and nitrogen. The IS proposed for *Bassin Parisien* does not seem to be altered in terms of economical sustainability.

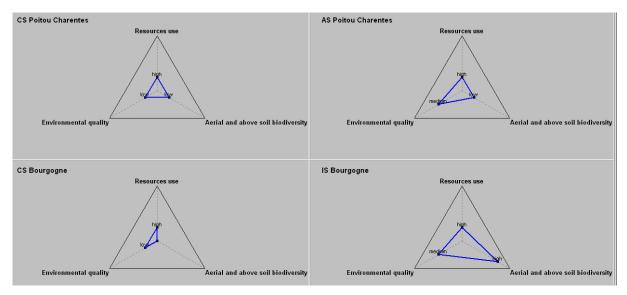
Figure 14. Estimation of the gross margin of the current system (CS) and the corresponding innovative systems (IS) described in the French region *Bassin Parisien*.


The social sustainability of the IS is improved, only because of an improvement of the 'interaction with society' attribute, characterized by the contribution to employment (the number of required hours of work for the IS is higher than for the CS) and by the acceptability of the system by society (also better in the IS). Despite small differences, the likelihood of adoption of the IS by farmers remains unchanged. However, it could be considered as lower for the IS. This part of the tree should be modified to reflect this. The operational difficulties linked with the IS increase in comparison with the CS: from very low for the CS to high to medium for the IS. It is due for example to a higher number of superficial tillage operation and risk of simultaneous operations. This was compensated by a lower workers' health risk due to pesticides (from very high for the CS to low for the IS).

Poitou Charentes and Bourgogne

Because of only small differences in the description of current systems, and their similar soils the environmental, economical and social sustainability of *Poitou Charentes* and *Bourgogne*, are similar for both CS (Figure 15). The AS allows an improvement of the social sustainability but leads to a decrease of the economical sustainability. Despite the significant decrease of the TFI, the environmental sustainability was the same between CS and AS, because other practices impacting on the environment such as tillage, fertilizers, etc. were similar. On the contrary, the IS lead to a better environmental and social sustainability, while the economical sustainability remains the same.

Figure 15. Estimation of the environmental, economical and social sustainability of the current system (CS) and the corresponding advanced and innovative systems (AS and IS) described in the French regions *Poitou Charentes* and *Bourgogne*.


Again, the CS in both regions are similar, except that the aerial biodiversity in the CS in *Bourgogne* is lower compared to the CS in *Poitou Charentes* because of a higher use of fungicide, impacting on aerial natural enemies and pollinators. The resource use was the same between CS, AS and IS (Figure 16), because there are few problems of water in both regions, the same amount of non-renewable fertilizers (P and K) are used in CS, AS and IS, the land use remains high to medium in both systems (because of a low availability in uncropped land in both regions), and only the indirect energy consumption is modified because of a lower amount of nitrogen fertilizer. The pesticide amount is significantly lower in AS and IS but the weight attributed to pesticide manufacturing compared to fertilizer manufacturing is very low.

Only the environmental quality is improved in the AS in comparison with the CS because of a better water quality (from low to medium for the CS to medium to high for the AS) and a lower air emission (from high to medium for the CS to medium to low for the AS), due to a decrease of pesticides and nitrogen fertilizers). Small differences are noticed in the flora diversity, but these differences are too small to appear on the aerial biodiversity.

The IS lead to an improvement of both environmental quality and aerial and above soil biodiversity. As for the AS, the environmental quality was improved mainly because of the decrease of nitrogen fertilizers and pesticides, and no fundamental differences occurred between AS and IS. In this part of the tree, the model does not seem to reflect the very high decrease of TFI between CS and IS in *Bourgogne* (from 7.1 to 0.4) compared to the decrease between CS and AS in *Poitou Charentes* (from 5.8 to 2.2), which is questionable, as the model should be more sensitive to TFI differences. This very high decrease of TFI as well as the diversification of crop sequence and the landscape management implies a high improvement of the aerial biodiversity (from very low for the CS to high for the IS).

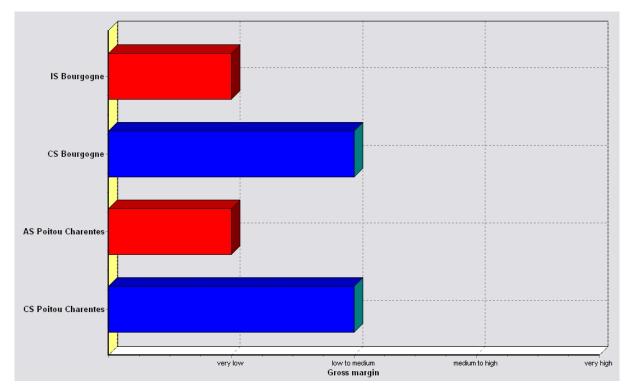


Figure 16. Estimation of the environmental sustainability of the current system (CS) and the corresponding advanced and innovative systems (AS and IS) described in the French regions *Poitou Charentes* and *Bourgogne*.

The gross margin decreases for both AS and IS in comparison with CS (Figure 17). It was due to the fact that the decrease in the production value was higher compared to the previous Bassin Parisien IS: very low for AS Poitou Charentes and IS Bourgogne compared to medium to high for the corresponding CS, and low to medium for the IS Bassin Parisien compared to medium to high for the corresponding CS. This decrease was therefore not compensated by the one class decrease of production cost occurring for the IS but not for the AS. This higher decrease in production value is due to the fact that in addition to a decrease in the yield (from medium for the CS to low for the AS and IS), the selling price decreased also because of the cultivar mixture in wheat used in the AS, and because of alfalfa. Indeed in France, it is not always possible to sell cultivar mixture and even if *Bourgogne* is a region with cattle livestock where it should be possible to sell alfalfa, the reluctance of some European partners to the introduction of alfalfa in systems lead to the choice of a penalty in the selling price associated with this crop). The economical viability is the same for CS and IS, leading to the same economical sustainability. On the contrary, the economical viability decreased between CS and AS, mainly because the pesticide dependency remains high in the AS in comparison with the IS. The analysis of the results of the economical sustainability should be analyzed in detail by experts of this discipline. However, it points out that, in some cases, the reduction of pesticides and nitrogen lead to reducing the economic viability of the systems even if many important modifications of cropping systems have been done.

Figure 17. Estimation of the gross margin of the current system (CS) and the corresponding advanced and innovative systems (AS and IS) described in the French regions *Poitou Charentes* and *Bourgogne*.

Again, the social sustainability of the AS and IS are improved, only because of an improvement of the 'interaction with society' attribute, characterized by the contribution to employment (the numbers of required hours of work for the AS and IS are higher than for the CS) and by the acceptability of the system by society (also estimated better in the AS and IS). Moreover, the landscape perception, also considered in this attribute, was better for the IS systems where landscape management was proposed. Again, differences in the likelihood of adoption could appear, particularly for the IS.

3/ Discussion on DEXiPM assessments of French systems

Overall, the results of the assessment of French systems were coherent with what was awaited. One of the main advantages of DEXiPM is to have in the same model an estimation of most of the aspects of sustainability. However, despite differences within the tree between CS and AS or IS, the model shows a problem of sensitivity to basic attributes, particularly for the upper criteria. Moreover, the attributes in the tree are not always sensitive to differences in pesticide use, because the model consider other aspects of crop management and context such as impact of fertilizers, tillage, etc. involved in the overall sustainability. The higher the number of attributes is in the tree, the less sensitive to each basic attribute the model is. Further study on the sensitivity of the model should be carried out. French AS and IS systems showed a systematic decrease of the yield, and a decrease of the gross margin for AS and IS systems in *Bourgogne* and *Poitou Charentes*. This also needs to be confirmed but the decrease of the gross margin is of course problematic for farmers, and the decrease of yield could not be tolerated by farmers and collecting firms and be very problematic in some context. But the multi-criteria assessments with DEXiPM allow also to discuss the possible levers that can be used: For example, the gross margin is lower for a given economical

context (prices, subsidies, etc.), but if systems demonstrate that environmental sustainability is improved, proposals can be made to decision makers to support these systems. Finally, DEXiPM is one of the only models attempting to represent the social sustainability, and the first results of assessment will allow improving the social tree.

No system can be "the best" for all aspects of overall sustainability. However, compromise systems can be identified for which at least one or two pillars of sustainability (economical, environmental, social) are improved. This seems to be the case for IS systems. Moreover, the environmental sustainability is greatly improved for both IS as well as for the AS, also for energy consumption and biodiversity. This is a step further to the reduction of pesticides. The economical sustainability has to be improved for AS in *Poitou Charentes* and IS in *Bourgogne*, even if economical results for the IS in *Bassin Parisien* show that IS in regions with high yield potential can be viable and equivalent to CS. Economical assessment results could urge the decision makers to propose subsidies based on environmental results, in order to improve the economical sustainability of AS and IS.

To conclude, DEXiPM should not be seen as a model to score the sustainability of the system, but more as a discussion tool within the group to reveal advantages and weaknesses of systems proposed by partners, and think about options to improve the weakness points.

Cross-country analysis using DexIPM

It was hoped that the DexIPM programme could be used to do a cross-country comparison of the CS , AS and IS1 systems for all three countries (France, Denmark and the UK). However, it became clear that some of the weightings for model parameters needed to be adapted to suit the circumstances within each individual country. Moreover, the proposed AS and IS1 systems for the three different countries were considered to be too different for any cross-country analysis to be meaningful. For these two reasons a cross-country analysis was not done. Nevertheless, a few common principles and contrasts can usefully be drawn between DEXiPM analyses of AS and IS systems in different countries.

DEXiPM detected a clear trend towards improved environmental sustainability in the proposed systems in France and the UK, but it did not detect a further increase in this indicator in Danish systems, even though the TFI in Denmark was reduced (from an already low base).

Economic sustainability was reduced in some AS or IS1 systems from all three countries, according to DEXiPM, even though the approaches to AS and IS design differed radically. DEXiPM suggested that, even though profitability remains the same in all three Danish systems, the economic sustainability of AS and IS is less robust because of the lower value of crops in the proposed systems, which leads to increased risk and reduced investment capacity. Likewise, in the French AS and IS systems where gross margin was reduced (Bourgogne and Poitou-Charentes, respectively), the reduced economic viability appears to be due to reduced yields and reduced selling prices for the crops grown. The same factors are likely to apply in the UK AS, where spring crops are included, and must be accentuated in the tested version of IS1, which includes a fallow for management of weed resistance but which gives no harvest.

The social sustainability of AS and IS systems in the UK and Denmark was rated by DEXiPM analysis to have improved no further compared to CS, which in both countries already achieve a high score for this very broad indicator of social acceptability and benefit. In the UK, however, several social indicators rated AS and IS systems to be easier for farmers to operate. DEXiPM analysis of AS and IS systems in France indicated that social sustainability was improved compared to CS due to improved 'interaction with society' (contribution to

employment) and improved acceptability to society (including landscape improvement). However, more operational difficulties were associated with the IS in Bassin Parisien due to the larger number of agronomic operations (especially tillage) and the potential for clashes in time.

All three countries considered DEXiPM assessments to have made a useful contribution to the discussion of the strengths and weaknesses of their AS and IS systems and to highlighting areas where improvement is needed.

Discussion

The proposals for advanced and innovative systems to reduce the use of pesticides were remarkably different in these three north European countries, leading to some difficulty in finding a common vocabulary to describe AS and IS. Two approaches to designing innovative cropping systems were identified:

- i. Innovative systems devised by modifying the existing CS, reducing pesticide use through the introduction of both low-tech practices (e.g. optimized/adjusted dosages, sowing densities and dates, cultivars, crop sequences, tillage, etc.) and hi-tech practices (e.g. GPS-guided applications, pesticide targeting, decision support systems). This approach relies on a mix of preventative and curative pest management and was adopted by the UK and Denmark,
- ii. Innovative systems developed from a cropping system with no pesticide (e.g. organic CS) relying on all possible low technology means to control pests, pesticides only being added when alternative practices fail. This approach firmly emphasizes preventative measures, re-designing the whole cropping system to limit the risk of pest attacks, and was adopted by France.

A consequence of these different approaches to innovative system design, together with the different local contexts for which they were designed, is that comparison of systems between countries is difficult. For example, the introduction of alfalfa is possible in French systems because of the presence of cattle on farms but it would not be possible in Danish systems where the crop would have no use. Danish farmers, by contrast, must maintain sufficient barley in their crop sequence to be able to feed pigs. Moreover, the lines between AS and IS were drawn differently in each country. For example, species intercropping was considered as an advanced practice in France as it is already commonly practiced in organic farming, whereas it was considered as innovative in Denmark and not included at all in UK systems. Mechanical weeding is one of the options for advanced systems in France but is considered only for innovative systems in Denmark and the UK. Wild flower margins were considered for AS in the UK (where they are increasingly in use already) whereas they are proposed for innovative systems in France.

The different approaches in different countries arise from the socio-economic and pedoclimatic contexts in each country and from the priority given to the constraints imposed by those contexts. The priority given to maintaining profitability and yield in the UK and to continuing to support pig production in Denmark, together with already low TFI levels in Denmark, limited some options for pesticide reduction and favoured a less radical redesign of cropping systems. In France, the very high priority given to reducing TFI, and the suitability of the pedo-climatic conditions for a wider range of crops, allowed a more complete and less

constrained redesign of the cropping systems, including radical modification of the crop sequence.

The TFIs of current systems varied greatly between countries, France and the UK currently having relatively high TFI in all crops compared to Denmark. As a result, there is more scope for TFI reduction in France and the UK and, to realize this, the proposed advanced and innovative systems for those countries were more different from their current systems than were the innovative systems for Denmark. For example, crops such as hemp or alfalfa were proposed in the French systems and fallows were an option for weed management in the British systems.

The results of DEXiPM assessment of innovative cropping systems differed between countries but perhaps less than might be expected given the different approaches to design and the differing levels of crop diversity proposed. Although Denmark achieved the lowest levels of TFI, DEXiPM indicated no improvement in overall levels of environmental sustainability, whereas IS systems in UK and France achieved improvements from 'low' to 'medium' for that score. The radically re-designed systems were in France not more environmentally sustainable than those less radically redesigned in the UK and, in common with the UK and Danish IS, presented economic problems that needed to be addressed. Findings of this kind are of value for indicating where there may be a role for policies (taxes, subsidies, etc.) to improve social and economical sustainability of environmentally successful systems.

DEXiPM multi-criteria assessment was intended to highlight problems that needed to be improved. It was a useful framework for structuring comparison of the sustainability and performance of the CS, AS and IS1 systems within countries and for highlighting areas where improvement is needed. However DEXiPM does not purport to replace a full and objective socio-economic and environmental impact assessment.

The present exercise has been a useful examination of what pesticide reduction might be achieved on farms and how and with what local consequences. Yet the proposed changes in cropping systems could have significant political implications, for example in relation to policy instruments necessary for their implementation and perhaps even in relation to markets, prices and food security. For example, what would be the cost to the taxpayer of promoting more sustainable farming systems that might be less economically sustainable, and what would be the wider consequence of a reduction in wheat production on farms in the UK adopting AS or IS? Such wider-scale implications of the AS and IS proposals have not been considered here and should form part of a future, more in-depth socieconomic analysis and assessement.

The process of development of higher level innovative systems (IS2) for futher pesticide reduction should lend itself to a different approach to design. IS2 systems would have a 10-20 year time horizon for implementation, integrating technologies now still in development. In this circumstance, it would be more appropriate to agree common principles acceptable in all three countries, arriving at prototype systems. These prototype IS2s would have potential for later adaptation to local country conditions at the time when the technologies are ready for practical use and the systems can be implemented.

Conclusions

We conclude that there is considerable scope for reductions in pesticide use by employing agronomic methods and technologies that are already available to farmers, or are close to being so, but that this scope varies greatly between countries depending upon how much pesticide usage has already been reduced and upon the local socio-economic and pedoclimatic context. The estimated maximum TFI reductions achieved by IS1 in Denmark, France and the UK were 37%, 94% and 56%, respectively, and it should be stressed that the reduction in Denmark is achieved from an already very low base-line. As a result of different local conditions and different approaches to system design, proposed AS and IS1 systems varied greatly between countries and direct comparisons were difficult. Nevertheless, DEXiPM analysis of the systems in the three countries suggested that France and the UK had been successful in designing systems with improved overall environmental sustainability compared to their current systems and that all countries had achieved improved or sustained social benefits. However, in at least some proposed systems in all countries, DEXiPM analysis suggested that environmental and social benefits were achieved at the cost of reduced economic sustainability of the proposed system. A full, objective socio-economic and environmental impact assessment of the proposed systems is essential if the implications of their implementation are to be adequately understood.

References

Aubertot, J.N., Barbier, J.M., Carpentier, A., Gril, J.J., Guichard, L., Lucas, P., Savary, S., Savini, I., Voltz, M., 2005. Pesticides, agriculture et environnement. Réduire l'utilisation des pesticides et limiter leurs impacts environnementaux. Rapport d'expertise scientifique collective, INRA et CEMAGREF.

Clarke J, Moss S. & Orson J. (2000) The future for grass weed management in the UK. *Pesticide Outlook* – April 2000, 59-63.

Guichard, L., 2008. PERSYST, un outil d'évaluation des performances agronomiques et environnementales des systèmes de culture. Livrable du SP1 Praiterre.

Guichard, L., Savini, I., Brunet, N., Debaeke, P., Delos, M., Guérin, O., Guindé, L., Mischler, P., Munier-Jolain, N., Omon, B., Rolland, B., Viaux, P., Villard, A., 2009. ECOPHYTO R&D, vers des systèmes de culture économes en produits phytosanitaires. VOLET 1, TOME II: Analyse comparative de différents systèmes en grandes cultures. Rapport d'expertise, INRA Editeur.

Jørgensen, LN & Kudsk P (2006) Twenty years' experience with reduced agrochemical inputs. In: *Proceedings Home Grown Cereal Authority, Research & Development Conference. Arable Crop Protection in the Balance Profit and the Environment, 25-26 of Jan. 2006*, Lincolnshire, UK, 16.1-16.10.

Melander B. (1995). Impact of drilling date on *Apera spica-venti* L. and *Alopecurus myosuroides* Huds. in winter cereals. *Weed Research* **35**, 157-166.

Melander B., Holst N., Jensen P.K., Hansen E.M. & Olesen J.E. (2008). *Apera spica-venti* population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. *Weed Research* **48**, 48-57.

Orson J.H. (2006) Weed and pest management. In: *Extended abstracts NJF (Nordic Association of Agricultural Scientists) Seminar 378*, Odense, Denmark, 46-53 (http://www.njf.nu/seminars/378/).

Schmidt, A. (2009). Caractérisation des pratiques de protection des cultures et réflexions sur les conditions de réussite d'un plan de réduction de l'utilisation de produits phytosanitaires par les pouvoirs publics, application à la production de blé et de colza. AgroParisTech report.

Valantin-Morison M., Meynard JM., Doré T. 2006a. Crop management and environment effects on insects in organic winter oil seed rape (WOSR) in France. Crop protection 26: 1108-1120

Valantin-Morison M., Quere L. 2006b. Effects of turnip rape trap crops on oilseed rape pests in a network of organic farmers' fields. *Congress of European Project MASTER*, *Integrated pest mangement* Göttingen (Allemagne), 2006/04/2-5

Appendix A: AS and IS1 systems for each country

Denmark, AS

Principles: principles of AS-systems proposed with regard to the main pest risk identified in the current system

Pest	Scale	Main crop protection strategies, main principles	Aim	Others impacts
			Impact on pests	disadvantages & advantages
WEEDS	Cropping system	Diversifying sowing periods by introducing spring crops	Prevent the proliferation of cleavers	The percentage of high yield crops (e.g. wheat) in the
		and shifting sowing dates (early/late sowing dates)	(Galium aparine) and specialised	rotation cannot be maintained.
			annual grass weeds	Energy and time consumption may increase (false
			Allows stale seedbed between harvest	seedbed)
			and drilling (late sowing or spring	Risk of NO ₃ leaching, especially with bare soil (prior
			crops)	to spring crops)
				Positive impact on diseases (sowing dates and
		D. J.	Delega de la la la Callana de Cal	diversified rotations)
		Prioritise crop cultivars with high disease resistance	Reduces the incidence of diseases	Delivery constraints for some crops
		Mechanical cultivation prior to sowing including	Reduces TFI	Energy and time consumption may increase Ploughing may reduce natural enemies
	All anoma	ploughing (inverting tillage) Reduced herbicide dose through field assessments and	Reduces TFI	
	All crops	optimised application timing supported by a decision	Reduces 1F1	Control failures leading to a high weed seed return
		support system		
	Crop: Winter oil	Inter-row cultivation	Reduces TFI, controls weeds	May decrease slug incidence
	seed rape		Troubles 11 1, Controls Weeds	I way decrease stag metaches
	Crop: winter	Delayed sowing	Reduces emergence of winter annual	Also efficient to decrease aphids causing Barley
	wheat		weeds	Yellow Dwarf Virus (BYDV) (no autumn insecticide
				against aphids, less fungicide).
				Slug problems may increase
				Risk of lower yield
				Risk of unsuitable sowing conditions
	Crop: spring	Placement of fertilizers	Increases weed suppression	Equipment for placement needed
	barley	Early sowing of high priority	Competition against spring weeds	Unsuitable weather / soil conditions for sowing
INSECTS	Landscape	No specific changes proposed		
PESTS	All crops	Spraying only according to the need, reduced insecticide	Reduce TFI	Control failures may occur
		dose according to warning systems, field assessments and		
DIGE LOD		optimised application timing		
DISEASE	Cropping system	Diversifying crops in the rotation	Increase duration between the same	Lower frequency of highly valuable crops

			crop	
	All Crops	Use of resistant cultivars against diseases	Reduces TFI	Resistant cultivars sometimes less productive
				Delivery constraints with cultivars
		Reduced fungicide dose through field assessments and optimised application timing supported by a decision support system	Reduces TFI	Control failures may occur
	Crop: Winter	Delayed sowing	Limit aphids and thus BYDV	Risk of lower yield
	wheat			Risk of unsuitable sowing conditions
SLUGS	Crops	Export straws if possible	Reduce TFI	Decrease of soil organic matter

LANDSCAPE MANAGEMENT PRACTICES

Landscape	Period	Practice	DEXiPM inputs	Observations
management				
Field margin		No specific changes from the current situation	Habitat management	
Non-productive area		No specific changes from the current situation	Habitat management	
Other landscape manage	ment that co	ould be mentioned, not in the present system		
Surrounding fields		Stubble management (stubble as source of inoculum for new fields, e.g. phoma	Pest pressure includes	
		stem canker), Species and cultivars choice and distribution at the landscape	cultivar distribution	
		scale (collective management of resistance durability, GM management), etc		

CROP MANAGEMENT PRACTICES

Crop management	Period (decade)	Practice and description	DEXiPM inputs (described in detail in the attached table)	Impact on pests	Disadvantages	Pesticide reduction
CROP SEQUENCE		 I. W. barley – W. rape – W. wheat – W. wheat + catch crop – S. barley II. W. barley – W. rape – W. wheat - W. wheat + catch crop – S. barley + catch crop / undersown ley – S. barley 	No of crops, proportion of summer crops, of late-harvest crops, crop type (winter, spring, summer, perennial), crop effect on pollinators, soil cover			
Pre-drilling tillage	August- September (just after	Stale seedbed and stubble breaking (cover crop) No of operations: 1-3	Superficial tillage between crops	Favour emergence of volunteers and <i>Bromus</i> species	Mineralization	Reduction of herbicides especially those with effects against grasses

	harvest of preceding crop)	Specified for each crop				
		Deep tillage: no, max. 25 cm	Deep tillage	Preserve soil natural enemies		
		Inversion tillage: yes	Tillage type (inversion)	Weed control in general	May reduce natural enemies	Lowers the need for gramicides
CROP 1: winter barley	Diseases: delay decision supporting Insects pests: in	d sowing, reduced herbicide dose through sowing to reduce BYDV, resistant and system assecticides against aphids, if necessary ide reduction in relation to current practices.	cultivars, reduced fungicide ctises: 5-10%	otimised application timing st dose through field assessme	upported by a decision supponts and optimised application	ort system n timing supported by a
Pre-drilling tillage	Early September	Light stubble cultivation in case of <i>Bromus</i> problems	Superficial tillage between crops	Promotes the emergence of <i>Bromus</i> species and volunteers, and reduces slugs	Nitrogen mineralization	50% herbicide reduction on 5-10% of the area, mainly saving the treatment against <i>Bromus</i>
Drilling	Mid- September	Criteria for variety choice ranked according to priority: 1) winter hardiness, 2) yield, 3) lodging, 4) rust (<i>Puccinia hordei</i>), 5) netblotch (<i>Drechlera teres</i>). Among pests: main focus on disease resistance	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced disease level of rust and net-blotch	Varieties not always available. The other factors may compromises disease resistance	50% reduction of fungicide use in comparison with a susceptible variety provided that resistant varieties are available
	Mid- September	Delayed sowing, 10-14 days	Superficial tillage between crops	Reduced incidence of Barley Yellow Dwarf Virus (BYDV) and reduced emergence of winter annual weeds	May increase slug problems on clay soils	50% insecticide reduction on 50% of the area, if warnings confirm a risk for aphid attacks
	Mid- September	Decrease seed rate, 250 pl m ⁻²	Sowing density	Reduces risk of lodging	Increased risk of weed growth	Little potential for reduction as there is only minor use of plant growth regulators (PGR)
Mineral fertilization	Early April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 60 K	Mineral P/K fertilizers applications Total number of treatment operations			
	Early April	No of operations: 1 Total amount kg ha ⁻¹ : 160 N	Mineral N fertilizer applications Total			

			number of treatment			
			operations			
Organic fertilization		No	Organic N fertilizer			
			applications			
			Total number of			
			treatment operations			
Molluscicide		No	Total pesticide TFI			
			Pesticide mobility			
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of			
			treatment operations			
Herbicide	October	Soil active herbicide	TFI of herbicide	Annual grass weeds and	Optimal timing can be	Early application
			Total pesticide TFI	broadleaved weeds	obstructed by	optimizes possibilities to
			Pesticide mobility		unfavourable weather	apply reduced rates and
			Pesticide eco-toxicity		conditions. Farming	product mixtures
			Soil cover at pesticide		structures with large	according to the weed
			application		areas to be treated can	flora. Mixtures and
			Total number of		also have a negative	correct timing can
			treatment operations		effect on timing.	potentially reduce
						herbicide input by 25%
	April	Foliage active herbicide	TFI of herbicide	Primary broad leaved	Optimal timing can be	Field assessment
			Total pesticide TFI	weed control.	jeopardised by	determines the need. If
			Pesticide mobility	Occasionally wild oat and	unfavourable weather	proper autumn treatment
			Pesticide eco-toxicity	remaining grass weeds	conditions and farm	has been made, the need
			Soil cover at pesticide		structures	for control will decline.
			application			Only 20-30% of the area
			Total number of			normally treated would be
			treatment operations			treated, if spraying
						decisions are based on
	Earle Inte	Due harmont Court / El	TFI of herbicide	Canala agricus 1 Octobrio	None	field assessment
	Early July	Pre-harvest Couch (Elymus		Couch control. Other	None	Field assessment
		repens) control with glyphosate	Total pesticide TFI	perennials are affected and		determines the need.
			Pesticide mobility Pesticide eco-toxicity	crop desiccation is achieved		Patch spraying, reduction
				acmeved		potential up to 90%
			Soil cover at pesticide			
			application Total number of			
	d. 1140		Total number of	//		

			treatment operations			
Fungicide Insecticide	May Early October	Chemical disease control Insecticide against BYDV	treatment operations TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations TFI of insecticide Total pesticide TFI Pesticide mobility	Rust, net-blotch, mildew (Erysiphe spp.), leaf scald (Rhynchosporium secalis) Aphid control	None	Field assessment determines the need. Optimised timing and dose. Reduction potential already achieved in practise If applied, then only according to risk. Treatments can be
			Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			avoided in some years
Growth regulator		No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Other chemical product		No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Biological control product (elicitor, pheromone)		No	Total number of treatment operations			
Irrigation		No	Irrigation			
Harvest	Mid-end July	Operation: classic (no additional cost) No of operation: 1 Expected yield: 6 t ha ⁻¹	Fuel consumption at harvest			

POST-HARVEST	End July	Stubble breaking (cover crop)	Superficial tillage	To reduce volunteers in		Reduction of herbicide			
MANAGEMENT/ pre		No of operations: 2	between crops	the subsequent crop					
drilling tillage Intermediate crop		No							
CROP 2: winter oil	Waaday maahan		acom: voluntoon control by l	ight stubble sultivation					
seed rape	Weeds: mechanical weeding, spring herbicide if necessary, volunteer control by light stubble cultivation Diseases: chemical control, resistant varieties								
seed Tape	Insects: chemical control according to field assessments and warning systems								
	Slugs: mechanical weeding, chemical control								
	Potential pesticide reduction in relation to current practises: 30-50%								
Drilling	Early-mid	Criteria for variety choice ranked	Additional seed cost of		Little information on	Documentation is lacking			
	August	according to priority: 1) winter	cultivar, yield reduction		disease resistance among				
	_	hardiness, 2) yield, 3) seed price	due to cultivar		varieties				
	Early-mid	Establishment on increased row	Superficial tillage		Early sowing might	See description for inter-			
	August	spacing, preferably 50 cm. Plant	between crops		increase the need for	row cultivation			
		density: 20-25 plants m ⁻¹			plant growth regulation				
					(PGR). Phoma may				
					increase. However, of				
		D	Combined to the control of the contr		minor importance				
Mechanical weeding	Mid-	Density: 20-25 plants m ⁻¹ 1-2 inter-row cultivations	Sowing density Superficial tillage in	Weed control in general.	Availability of	80% herbicide reduction.			
Mechanical weeding	September	1-2 inter-row cultivations	crops	May reduce slug incidence	machinery, low capacity,	Lower need for PGR			
	September		crops	Way reduce stug metachee	weather dependency	although not commonly			
					Insufficient effect	used			
					against high levels of	asea			
					volunteers and grass				
					weeds in the rows				
Mineral Fertilization	Mid March	No of operations: 1	Mineral P/K fertilizer						
		Standard total amount kg ha ⁻¹ : 25	applications Total						
		P, 80 K	number of treatment						
			operations						
	Mid-	No of operations: 1-2	Mineral N fertilizer						
	September /	Total amount kg ha ⁻¹ : 180 N	applications Total						
	Mid-March		number of treatment						
Ongonio Fontilization		No	operations Organic N fertilizer						
Organic Fertilization		INO	applications Total						
			number of treatment						
			operations						
			operations						

Molluscicide		No		Late sowing		
Herbicide	Ultimo April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Mayweed Tripleurospermum inodorum	None	Field assessment determines the need. Potentially 50% reductions with patch spraying
Fungicide	Early October	Chemical phoma control (<i>Phoma lingam</i>)	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Phoma + PGR	None	If high level of nutrients from slurry, PGR application might be relevant
	May	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Sclerotinia stem rot (Sclerotinia sclerotium), alternaria spp., grey rot (Botrytis cinerea)	None	No reductions possible due to lack of efficient warning systems
Insecticide	September	Chemical slug control following inter-row cultivation and only on loam/clay soils	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Slugs	None	According to alerts from a warning system on field level
	Early October	Chemical cabbage stem flea beetle (Psylliodes chrysocepthala) control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application	Cabbage stem flea beetle	None	According to alerts from a warning system on field level

			Total number of			
	3.6.12.12		treatment operations		27	D: 11
	Medio-ultimo	Chemical pest control	TFI of insecticide	Pollen beetle (Meligethes	None	Field assessment determines the need. 30%
	April		Total pesticide TFI	aeneus)		
			Pesticide mobility			reduced dose currently
			Pesticide eco-toxicity			used
			Soil cover at pesticide			
			application Total number of			
	Morr	Chamical most control	treatment operations TFI of insecticide	Cabbaga and warvil	None	Field assessment
	May	Chemical pest control		Cabbage seed weevil,	None	determines the need. 30%
			Total pesticide TFI Pesticide mobility	(Ceutorhynchus assimilis) & Brassica pod midge		
			Pesticide mobility Pesticide eco-toxicity	(Dasineura brassicae)		reduced dose currently used
			Soil cover at pesticide	(Dasineura brassicae)		used
			application			
			Total number of			
			treatment operations			
Growth regulator		No	treatment operations			
Other chemical		No				
product						
Biological control		No	Total number of			
product (elicitor,			treatment operations			
pheromone)			1			
Irrigation		No	Irrigation			
Harvest	Mid July	Operation: classic (no additional	Fuel consumption at			
		cost)	harvest			
		No:1				
		Expected yield: 3.4 t ha ⁻¹				
		Straws exported	Stubble management	Avoid slugs		No molluscicide
POST-HARVEST	End July /	Stubble breaking (cover crop)	Superficial tillage	To reduce volunteers in		Reduction of herbicide
MANAGEMENT/ pre	early august	No of operations: 2	between crops	the subsequent crop		
drilling tillage	Early	Light stubble cultivation in case of	Superficial tillage	Promotes the emergence	Nitrogen mineralization	50% herbicide reduction
	September	Bromus problems	between crops	of Bromus species and		on 5-10% of the area,
				volunteers, and reduces		mainly saving the
				slugs		treatment against Bromus
Intermediate crop		No				
CROP 3 and 4 in	Weeds: delayed sowing, reduced herbicide dose through field assessments and optimised application timing supported by a decision support system					

rotations I and II:	Diseases: resist	ant variety, reduced fungicide dose the	rough field assessments and	optimised application timing	supported by a decision sup	port system			
winter wheat	Insects: resistant variety, spraying only according to the need, reduced insecticide dose according to warning systems, field assessments and optimised application timing								
		ed crop density							
D. IIII		tide reduction in relation to current pra				T 500/ 1 .: 6			
Drilling	September	Criteria for variety choice ranked according to priority: 1) winter hardiness, 2) yield, 3) lodging tendency, 4) rust (<i>Puccinia spp.</i>), 5) Septoria tritici, 6) mildew (<i>Erysiphe spp.</i>), among pests main focus on disease resistance	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced disease level of the diseases mentioned	Varieties not always available. The other criteria may compromise disease resistance	50% reduction of fungicide use in comparison with a susceptible variety provided that the resistant varieties are available			
		Delayed sowing 10-14 days	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced incidence of Barley Yellow Dwarf Virus and reduced emergence of winter annual weeds	May increase slug problems on clay soils	50% insecticide reduction on 30% of the area, if warnings confirm risk of aphid attacks			
		Decreased density: 250-300 pl. m ⁻	Sowing density	Reduces the risk of lodging	Increased risk of weed growth	Small potential for reduction as there is relatively little use of PGR			
Mechanical weeding		No	Superficial tillage in crops						
Mineral Fertilization	Early April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 60 K	Mineral P/K fertilizers applications Total number of treatment operations						
	Early April	No of operations: 1 Total amount kg ha ⁻¹ : 120 N for crop 3 and 160 N for crop 4	Mineral N fertilizer applications Total number of treatment operations						
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations						
Molluscicide		No	•						
Herbicide	October	Chemical weed control	TFI of herbicide Total pesticide TFI	Weed control, especially against grass weeds	Optimal timing can be jeopardized by	Early application optimizes the possibilities			

	April	Chemical weed control	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Primary broad leaved weeds. Occasionally wild oat (Avena fatua L.) and remaining grass weeds	unfavourable weather conditions and farm structures and lack of sufficient capacity Optimal timing can be jeopardized by unfavourable weather conditions and farm structures and lack of sufficient capacity	to apply reduced rates and product mixtures according to the weed flora. Mixtures and correct timing may result in a 25% reduction Field assessment determines the need. If a proper autumn treatment has been made, the need will decline. Only 20-30% of the area would be treated, if decisions about spraying are based on field assessments
	Primo July	Pre-harvest Couch (<i>Elymus repens</i>) control with glyphosate. Applied in the winter wheat crop in the rotation in 50% of the cases	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Couch control. Other perennials and desiccation of the crop	None	Field assessment determines the need. Reduction potential up to 90% with patch spraying
Fungicide	May-June	Chemical disease control, 1-2 treatments	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Rust, mildew, septoria	None	Field assessment determines the need. Optimised timing and dose in practise. Reduction potential already achieved
Insecticide	Early October	Insecticide against BYDV	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Aphid control (e.g. Sitobion avenae)	None	If applied then only according to risk. Treatments can be avoided in some years

Growth regulator	June	Chemical pest control Chemical control, Plant Growth	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations Total pesticide TFI	Aphids / orange wheat blossom midge (Sitodiplosis mosellana) Decreased risk of lodging	None	Field assessments, resistant varieties against orange wheat blossom midge N-limitations, variety
		Regulation	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			choice, seed rate and sowing date influence the need for PGR
Other chemical		No				
product		N	TD + 1 C			
Biological control product (elicitor,		No	Total number of treatment operations			
pheromone)			treatment operations			
Irrigation		No				
Harvest	End of August	Operation: classic (no additional cost) No: 1 Yield 7.2 t ha ⁻¹	Fuel consumption at harvest			
POST-HARVEST MANAGEMENT/ pre drilling tillage between	Early September	Light stubble cultivation in case of <i>Bromus</i> problems	Superficial tillage between crops	Promotes the emergence of <i>Bromus</i> species and volunteers, and reduces	Nitrogen mineralization	50% herbicide reduction on 5-10% of the area, mainly saving the
crops 3 and 4				slugs		treatment against Bromus
Catch crop after crop 4	Late August	Catch crop		Suppresses weed growth in the autumn		Unknown
CROP 5 in rotation I:		r placement, reduced herbicide dose the				
spring barley		ant variety, reduced fungicide dose thr				
CROP 5 and 6 in		g only according to the need, reduced		to warning systems, field asse	ssments and optimised appli	cation timing
rotation II: spring barley	Potential pestici	de reduction in relation to current pra	ctises: 10-30%			
Drilling	March-April	Criteria for variety choice ranked	Superficial tillage	Reduced disease level of	Varieties not always	50% reduction of
b	1	according to priority: 1) yield, 2)	between crops	rust and net-blotch	available. The other	fungicide use in

		quality, 3) rust, 4) net-blotch. Among pests main focus is on disease resistance			factors may compromise disease resistance	comparison with a susceptible variety provided that resistant varieties are available
	Density: 300- 350 pl. m ⁻²	Sowing density	Additional seed cost of cultivar, yield reduction due to cultivar	Improved crop competiveness against weeds	Lodging	Reduced herbicide dose may become more efficient
Mechanical weeding		No				
Mineral Fertilization	March-April	Placement of nutrients	Mineral N/P/K fertilizer applications Total number of treatment operations	Improved crop competitiveness against weeds	None	25% reduction in herbicide input
	March-April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 50 K	Mineral P/K fertilizers applications Total number of treatment operations			
	March-April	No of operations: 1 Total amount kg ha ⁻¹ : 120 N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No				
Molluscicide		No				
Herbicide	April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Primary broad leaved weeds. Occasionally wild oat (<i>Avena fatua</i> L.) and remaining grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and farm structures and lack of sufficient capacity	Field assessment determines the need. Optimal timing can reduce the dose by 20-30%
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Rust, net-blotch, mildew, leaf scald (Rhynchosporium secalis)		Field assessment determines the need. Optimised timing and dose in practise, reduction potential already achieved

Insecticide	May	Chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Aphids, cereal leaf beetle (Oulema spp.)	Field assessment, spraying according to the need
Growth regulator		No			
Other chemical		No			
product					
Biological control		No			
product (elicitor,					
pheromone)					
Irrigation		No			
Harvest	Harvest	Mid-August	Operation: classic (no	Fuel consumption at	
			additional cost)	harvest	
			No:1		
			Yield 4.9 t ha ⁻¹		
Catch crop after crop 5	Late August	Catch crop		Suppresses weed growth	Unknown
in rotation II				in the autumn	

Denmark IS1-systems (differences from AS are written in bold)

Principles principles of the ISIs proposed with regard to the main past rick identified in the current system

Pest	Scale	Main crop protection strategies, main principles	Aim	Others impacts
			Impact on pests	disadvantages & advantages
WEEDS	Cropping system	Diversifying sowing periods by introducing spring crops and shifting sowing dates (early/late sowing dates)	Prevent the proliferation of cleavers (Galium aparine) and specialised annual grass weeds Allows stale seedbed between harvest and drilling (late sowing or spring crops)	The percentage of high yield crops (e.g. wheat) in the rotation cannot be maintained. Energy and time consumption may increase (false seedbed) Risk of NO ₃ leaching, especially with bare soil (prior to spring crops) Positive impact on diseases (sowing dates and diversified rotations)
		Prioritise crop cultivars with high disease resistance	Reduces the incidence of diseases	Delivery constraints for some crops
	4	Mechanical cultivation prior to sowing including	Reduces TFI	Energy and time consumption may increase

		ploughing (inverting tillage)		Ploughing may reduce natural enemies
	All crops	Reduced herbicide dose through field assessments and optimised application timing supported by a decision support system	Reduces TFI	Control failures leading to a high weed seed return
	Crop: Winter oil seed rape	Inter-row cultivation	Reduces TFI, controls weeds	May decrease slug incidence
	Crop: winter wheat	Delayed sowing	Reduces emergence of winter annual weeds	Also efficient to decrease aphids causing Barley Yellow Dwarf Virus (BYDV) (no autumn insecticide against aphids, less fungicide). Slug problems may increase Risk of lower yield Risk of unsuitable sowing conditions
	Crop: spring	Placement of fertilizers	Increases weed suppression	Equipment for placement needed
	barley	Early sowing of high priority	Competition against spring weeds	Unsuitable weather / soil conditions for sowing
INSECTS PESTS	Landscape	Small fields (<10 ha), settlement of hedges or other non-productive areas	Favour natural enemies	
		Flowering strips for pollinators (syrphae), refuges for ladybugs in winter	Favour natural enemies populations against aphids	
		Turnip rape (Brassica rapa) on WOSR margins	Attract pollen beetles	Loss of productive area
	All crops	Spraying only according to the need, reduced insecticide dose according to warning systems, field assessments and optimised application timing	Reduce TFI	Control failures may occur
DISEASE	Cropping system	Diversifying crops in the rotation	Increase duration between the same crop	Lower frequency of highly valuable crops
	All Crops	Use of resistant cultivars against diseases	Reduces TFI	Resistant cultivars sometimes less productive Delivery constraints with cultivars
		Reduced fungicide dose through field assessments and optimised application timing supported by a decision support system	Reduces TFI	Control failures may occur
	Crop: Winter wheat	Delayed sowing	Limit aphids and thus BYDV	Risk of lower yield Risk of unsuitable sowing conditions
SLUGS	Crops	Export straws if possible	Reduce TFI	Decrease of soil organic matter

IS1 prototype

LANDSCAPE MANAGEMENT PRACTICES

Landscape	Period	Practice	DEXiPM inputs	Observations
management				
Field margin		Trap cropping. Flowering bordering zones to trap insects	Habitat management	Breaking at flowering to kill part of the
				pollen beetle
Non-productive area		Hedges, flowering strips	Habitat management	Increase natural enemies populations
Landscape (fields,		Stewardship schemes	Societal value of	Landscape perception
margins, and non-			landscape	
productive areas)				
Other landscape manage	ment that co	ould be mentioned, not in the present system		
Surrounding fields		Stubble management (stubble as source of inoculum for new fields, e.g. phoma	Pest pressure includes	
		stem canker), Species and cultivars choice and distribution at the landscape	cultivar distribution	
		scale (collective management of resistance durability, GM management), etc		

CROP MANAGEMENT PRACTICES

Crop management	Period (decade)	Practice and description	DEXiPM inputs (described in detail in the attached table)	Impact on pests	Disadvantages	Pesticide reduction
CROP SEQUENCE		I. W. barley – W. rape – W. wheat – W. wheat + catch crop – S. barley II. W. barley – W. rape – W. wheat - W. wheat + catch crop – S. barley + catch crop / undersown ley – S. barley	No of crops, proportion of summer crops, of late- harvest crops, crop type (winter, spring, summer, perennial), crop effect on pollinators, soil cover			
General management of crop protection		Logistics: optimisation of systems to manage logistics at farm level: improves timing, capacity and rounding off of areas because the work is better organised		Better effects are expected because timing of applications are improved		0-5% reduction in pesticide input
		Spraying technology: spraying equipment with higher capacity. GPS-systems introduced to avoid overlapping, 5 % savings in pesticide use in Danish farm				Overlapping and non- target areas are avoided

	test. Whenever possible spraying should be based on weed mapping and patch spraying				
	Improved forecasting models and decision support systems		More targeted treatments with better timing		The reduction potential unknown
August- September (just after harvest of preceding crop)	Stale seedbed and stubble breaking (cover crop) No of operations: 1-3 Specified for each crop	Superficial tillage between crops	Favour emergence of volunteers and <i>Bromus</i> species	Mineralization	Reduction of herbicides especially those with effects against grasses
	Dynamic tillage: various depths, tillage according to need and problem	Deep tillage	Preserve soil natural enemies, control pests		Lower need for pesticides in general
	Inversion tillage: yes/no	Tillage type (inversion/non- inversion)	Weed control in general. Less crop residues	May reduce natural enemies.	Lowers the need for gramicides
decision suppo Diseases: delay timing supporte	ort system. Prevention of weed seed re yed sowing to reduce BYDV, variety ed by a improved decision support system	turn during harvesting mixtures with resistant cult tem. Adjusted fungicide dos	tivars, reduced fungicide do sage according to crop bion	se through field assessment	•
Early September	Light stubble cultivation in case of <i>Bromus</i> problems	Superficial tillage between crops	Promotes the emergence of <i>Bromus</i> species and volunteers, and reduces	Nitrogen mineralization	50% herbicide reduction on 5-10% of the area, mainly saving the treatment against <i>Bromus</i>
Mid- September	Variety mixtures that minimises disease attack relative to single varieties. Resistance against 1) rust (<i>Puccinia hordei</i>) and 2) netblotch (<i>Drechlera teres</i>) of particular interest	Additional seed cost of cultivar, yield reduction due to cultivar	Avoid high disease levels	Varieties not always available. Factors such as yield, winter hardiness and lodging may compromises disease resistance	a constant against Dromas
Mid- September	Delayed sowing, 10-14 days	Superficial tillage between crops	Reduced incidence of Barley Yellow Dwarf Virus (BYDV) and reduced emergence of	May increase slug problems on clay soils	50% insecticide reduction on 50% of the area, if warnings confirm a risk for aphid attacks
	September (just after harvest of preceding crop) Weeds: delaye decision support lineates pests: i Early September Mid-September Mid-September	should be based on weed mapping and patch spraying Improved forecasting models and decision support systems August- September (cover crop) (just after No of operations: 1-3 harvest of preceding crop) Dynamic tillage: various depths, tillage according to need and problem Inversion tillage: yes/no Weeds: delayed sowing, reduced herbicide dose throu decision support system. Prevention of weed seed re Diseases: delayed sowing to reduce BYDV, variety timing supported by a improved decision support system. Early September Light stubble cultivation in case of Bromus problems Mid- September Variety mixtures that minimises disease attack relative to single varieties. Resistance against 1) rust (Puccinia hordei) and 2) net-blotch (Drechlera teres) of particular interest Mid- Delayed sowing, 10-14 days	should be based on weed mapping and patch spraying Improved forecasting models and decision support systems Stale seedbed and stubble breaking (cover crop) No of operations: 1-3 Specified for each crop Dynamic tillage: various depths, tillage according to need and problem Inversion tillage: yes/no Tillage type (inversion/non-inversion) Weeds: delayed sowing, reduced herbicide dose through field assessments and optidecision support system. Prevention of weed seed return during harvesting Diseases: delayed sowing to reduce BYDV, variety mixtures with resistant cultiming supported by a improved decision support system. Adjusted fungicide dos Insects pests: insecticides against aphids, if necessary. Improved forecasting mod September Early September Variety mixtures that minimises disease attack relative to single varieties. Resistance against 1) rust (Puccinia hordei) and 2) net-blotch (Drechlera teres) of particular interest Mid- Delayed sowing, 10-14 days Superficial tillage Superficial tillage	Should be based on weed mapping and patch spraying Improved forecasting models and decision support systems Stale seedbed and stubble breaking (cover crop) Stale seedbed and stubble breaking (cover crop) Stale seedbed and stubble breaking (cover crop) Specified for each crop Specified for each crop Dynamic tillage: various depths, tillage according to need and problem Inversion tillage: yes/no Tillage type (inversion/non-inversion) Tillage type (inversion/non-inversion) Tillage type (inversion/non-inversion) Tillage type (inversion) Tillage type (inversi	Improved forecasting models and decision support systems Stale seedbed and stubble breaking September (cover crop) No of operations: 1-3 Specified for each crop Spe

				winter annual weeds		
	Mid- September	Decrease seed rate, 250 pl m ⁻²	Sowing density	Reduces risk of lodging	Increased risk of weed growth	Little potential for reduction as there is only minor use of plant growth regulators (PGR)
Mineral fertilization	Early April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 60 K	Mineral P/K fertilizers applications Total number of treatment operations			
	Early April	No of operations: 1 Total amount kg ha ⁻¹ : 160 N	Mineral N fertilizer applications Total number of treatment operations			
Organic fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	October	Soil active herbicide	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Annual grass weeds and broadleaved weeds	Optimal timing can be obstructed by unfavourable weather conditions. Farming structures with large areas to be treated can also have a negative effect on timing.	Early application optimizes possibilities to apply reduced rates and product mixtures according to the weed flora. Mixtures and correct timing can potentially reduce herbicide input by 25%
	April	Foliage active herbicide	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Primary broad leaved weed control. Occasionally wild oat and remaining grass weeds	Optimal timing can be jeopardised by unfavourable weather conditions and farm structures	Field assessment determines the need. If proper autumn treatment has been made, the need for control will decline. Only 20-30% of the area normally treated would be

			operations			treated, if spraying decisions are based on field assessment
	Early July	Pre-harvest Couch (<i>Elymus</i> repens) control with glyphosate	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Couch control. Other perennials are affected and crop desiccation is achieved	None	Field assessment determines the need. Patch spraying, reduction potential up to 90%
Fungicide	May	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Rust, net-blotch, mildew (Erysiphe spp.), leaf scald (Rhynchosporium secalis)	None	Field assessment determines the need. Optimised timing and dose. Reduction potential already achieved in practise
Insecticide	Early October	Insecticide against BYDV	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Aphid control		If applied, then only according to risk. Treatments can be avoided in some years
Growth regulator		No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Other chemical product		No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application			

			Total number of treatment operations			
Biological control product (elicitor, pheromone)		No	Total number of treatment operations			
Irrigation		No	Irrigation			
Harvest	Mid-end July	Operation: classic (no additional cost) No of operation: 1 Expected yield: 6 t ha ⁻¹	Fuel consumption at harvest			
		Harvest techniques: collecting weed seeds during harvest operation, spot mapping of individual weed species during harvest operation	Fuel consumption at harvest	Prevention of weed seed return – less future weed problems		Reduction potential unknown
POST-HARVEST MANAGEMENT/ pre drilling tillage	End July	Stubble breaking (cover crop) No of operations: 2	Superficial tillage between crops	To reduce volunteers in the subsequent crop		Reduction of herbicide
Intermediate crop		No				
CROP 2: winter oil	Weeds: mechan	ical weeding, spring herbicide if neces	ssary, volunteer control by lig	ht stubble cultivation. Band	spraying. Prevention of w	eed seed return during
seed rape	Insects: chemica	ical control, resistant varieties. Adjust al control according to field assessment cal weeding, chemical control				
Drilling	Early-mid August	Criteria for variety choice ranked according to priority: 1) winter hardiness, 2) yield, 3) seed price	Additional seed cost of cultivar, yield reduction due to cultivar		Little information on disease resistance among varieties	Documentation is lacking
	Early-mid August	Establishment on increased row spacing, preferably 50 cm. Plant density: 20-25 plants m ⁻¹	Superficial tillage between crops		Early sowing might increase the need for plant growth regulation (PGR). Phoma may increase. However, of minor importance	See description for interrow cultivation
		Density: 20-25 plants m ⁻¹	Sowing density		•	
Mechanical weeding	Mid- September	1-2 inter-row cultivations	Superficial tillage in crops	Weed control in general. May reduce slug incidence	Availability of machinery, low capacity, weather dependency	80% herbicide reduction. Lower need for PGR although not commonly

					Insufficient effect against high levels of volunteers and grass weeds in the rows	used
Mineral Fertilization	Mid March	No of operations: 1 Standard total amount kg ha ⁻¹ : 25 P, 80 K	Mineral P/K fertilizer applications Total number of treatment operations			
	Mid- September / Mid-March	No of operations: 1-2 Total amount kg ha ⁻¹ : 180 N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No		Late sowing		
Herbicide	September	Development of band-spraying techniques against intra-row weeds in oilseed rape	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Effective against intra- row weeds in contrast to inter-row cultivation	Low working capacity	Slight increase in herbicide use
	Ultimo April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Mayweed Tripleurospermum inodorum	None	Field assessment determines the need. Potentially 50% reductions with patch spraying
Fungicide	Early October	Chemical phoma control (<i>Phoma lingam</i>)	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Phoma + PGR	None	If high level of nutrients from slurry, PGR application might be relevant
M 4	Мау	Chemical disease control	TFI of fungicide	Sclerotinia stem rot	None	No reductions possible

			Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	(Sclerotinia sclerotium), alternaria spp., grey rot (Botrytis cinerea)		due to lack of efficient warning systems
Insecticide	September	Chemical slug control following inter-row cultivation and only on loam/clay soils	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Slugs	None	According to alerts from a warning system on field level
	Early October	Chemical cabbage stem flea beetle (Psylliodes chrysocepthala) control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Cabbage stem flea beetle	None	According to alerts from a warning system on field level
	Medio-ultimo April	Chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Pollen beetle (Meligethes aeneus)	None	Field assessment determines the need. 30% reduced dose currently used
	May	Chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Cabbage seed weevil, (Ceutorhynchus assimilis) & Brassica pod midge (Dasineura brassicae)	None	Field assessment determines the need. 30% reduced dose currently used

Growth regulator		No				
Other chemical		No				
product						
Biological control product (elicitor, pheromone)		No	Total number of treatment operations			
Irrigation		No	Irrigation			
Harvest	Mid July	Operation: classic (no additional cost) No : 1 Expected yield: 3.4 t ha ⁻¹	Fuel consumption at harvest			
		Harvest techniques: collecting weed seeds during harvest operation, spot mapping of individual weed species during harvest operation	Fuel consumption at harvest	Prevention of weed seed return – less future weed problems		Reduction potential unknown
		Straws exported	Stubble management	Avoid slugs		No molluscicide
POST-HARVEST MANAGEMENT/ pre	End July / early august	Stubble breaking (cover crop) No of operations: 2	Superficial tillage between crops	To reduce volunteers in the subsequent crop		Reduction of herbicide
drilling tillage	Early September	Light stubble cultivation in case of <i>Bromus</i> problems	Superficial tillage between crops	Promotes the emergence of <i>Bromus</i> species and volunteers, and reduces slugs	Nitrogen mineralization	50% herbicide reduction on 5-10% of the area, mainly saving the treatment against <i>Bromus</i>
Intermediate crop		No				
CROP 3 and 4 in rotations I and II: winter wheat	Prevention of v Diseases: varied improved decis Insects: resistan timing. Improv Lodging: reduce		rarieties, reduced fungicide do sting models against septori ne need, reduced insecticide dainst aphids	ose through field assessment ia. Adjusted fungicide dosa lose according to warning sy	s and optimised application ge according to crop biom stems, field assessments and	timing supported by an ass
Drilling	September	Variety mixtures that minimises disease attack relative to single varieties. Resistance against 1) rust (Puccinia spp.), 2) Septoria tritici, 3) mildew (Erysiphe spp.), of particular interest	Additional seed cost of cultivar, yield reduction due to cultivar	Avoid high disease levels	Varieties not always available. Factors such as yield, winter hardiness and lodging may compromises disease resistance	

		Species mixtures as an alternative to variety mixtures: winter wheat and winter peas mixtures	Additional seed cost of cultivar, yield reduction due to cultivar	Less disease attacks in wheat, less aphid attack.	Weed problems more uncertain	Reduced fungicide use and probably also insecticide
		Delayed sowing 10-14 days	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced incidence of Barley Yellow Dwarf Virus and reduced emergence of winter annual weeds	May increase slug problems on clay soils	50% insecticide reduction on 30% of the area, if warnings confirm risk of aphid attacks
		Decreased density: 250-300 pl. m ⁻²	Sowing density	Reduces the risk of lodging	Increased risk of weed growth	Small potential for reduction as there is relatively little use of PGR
Mechanical weeding		No	Superficial tillage in crops			
Mineral Fertilization	Early April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 60 K	Mineral P/K fertilizers applications Total number of treatment operations			
	Early April	No of operations: 1 Total amount kg ha ⁻¹ : 120 N for crop 3 and 160 N for crop 4	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	•			
Herbicide	October	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Weed control, especially against grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and farm structures and lack of sufficient capacity	Early application optimizes the possibilities to apply reduced rates and product mixtures according to the weed flora. Mixtures and correct timing may result in a 25% reduction
	April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility	Primary broad leaved weeds. Occasionally wild oat (Avena fatua L.) and	Optimal timing can be jeopardized by unfavourable weather	Field assessment determines the need. If a proper autumn treatment

Pesticide mobility Pesticide coc-toxicity Soli cover at pesticide application Total number of treatment operations		Primo July	Pre-harvest Couch (<i>Elymus repens</i>) control with glyphosate. Applied in the winter wheat crop in the rotation in 50% of the cases	Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application	Couch control. Other perennials and desiccation of the crop	conditions and farm structures and lack of sufficient capacity None	has been made, the need will decline. Only 20-30% of the area would be treated, if decisions about spraying are based on field assessments Field assessment determines the need. Reduction potential up to 90% with patch spraying
treatments Total pesticide TFI Pesticide mobility Pesticide co-toxicity Soil cover at pesticide application Total number of treatment operations Insecticide Early October Early October Insecticide against BYDV Insecticide against BYDV TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide co-toxicity Soil cover at pesticide application Total number of treatment operations June Chemical pest control TFI of insecticide Total pesticide TFI Pesticide application Total number of treatment operations TFI of insecticide application Total number of treatment operations TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide co-toxicity Soil cover at pesticide application Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total pesticide TFI Pesticide mobility Pesticide application Total number of treatment operations Total pesticide TFI Pesticide application Total number of treatment operations Total pesticide TFI Pesticide application Total number of treatment operations Total pesticide TFI Pesticide application Total number of treatment operations Total pesticide TFI Pesticide application Total number of treatment operations Total pesticide TFI Pesticide application Total number of treatment operations Total pesticide TFI Pestic	Eunaiaida	Moy Juno	Chamical disease control 1.2	operations	Pust mildov sontorio	None	Field assessment
Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations June Chemical pest control TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide Total pesticide TFI Pesticide TFI Pesticide mobility Pesticide application Total number of treatment operations Aphids / orange wheat blossom midge (Sitodiplosis mosellana) Soil cover at pesticide application Total number of treatment operations Growth regulator April Chemical control, Plant Growth Total pesticide TFI Decreased risk of lodging None N-limitations, variety	rungiciae	May-June		Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Kusi, iiiiuew, sepioria	None	determines the need. Optimised timing and dose in practise. Reduction potential
Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations Growth regulator Total pesticide TFI Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations Total pesticide TFI Decreased risk of lodging None N-limitations, variety None	Insecticide	Early October		Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Sitobion avenae)		according to risk. Treatments can be avoided in some years
Growth regulator April Chemical control, Plant Growth Total pesticide TFI Decreased risk of lodging None N-limitations, variety		June	Chemical pest control	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	blossom midge (Sitodiplosis mosellana)		resistant varieties against orange wheat blossom
	Growth regulator	A pril	Chemical control, Plant Growth	•	Decreased risk of lodging	None	N-limitations, variety

Other chemical product Biological control product (elicitor,		Regulation No No	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations Total number of treatment operations			choice, seed rate and sowing date influence the need for PGR
pheromone)			1			
Irrigation		No				
Harvest	End of August	Operation: classic (no additional cost) No : 1 Yield 7.2 t ha ⁻¹	Fuel consumption at harvest			
		Harvest techniques: collecting weed seeds during harvest operation, spot mapping of individual weed species during harvest operation	Fuel consumption at harvest	Prevention of weed seed return – less future weed problems		Reduction potential unknown
POST-HARVEST MANAGEMENT/ pre drilling tillage between crops 3 and 4	Early September	Light stubble cultivation in case of <i>Bromus</i> problems	Superficial tillage between crops	Promotes the emergence of <i>Bromus</i> species and volunteers, and reduces slugs	Nitrogen mineralization	50% herbicide reduction on 5-10% of the area, mainly saving the treatment against <i>Bromus</i>
Catch crop after crop 4	Late August	Catch crop		Suppresses weed growth in the autumn		Unknown
CROP 5 in rotation I: spring barley CROP 5 and 6 in rotation II: spring barley	Weeds: fertiliser placement, reduced herbicide dose through field assessments and optimised application timing supported by an improved decision support system. Prevention of weed seed return during harvesting Diseases: variety mixtures with resistant varieties, reduced fungicide dose through field assessments and optimised application timing supported by an improved decision support system. Adjusted fungicide dosage according to crop biomass Insects: spraying only according to the need, reduced insecticide dose according to warning systems, field assessments and optimised application timing. Improved forecasting models, especially against aphids					
Drilling	March-April	Variety mixtures that minimises disease attack relative to single varieties. Resistance against 1) mildew, 2) rust, and 2) net-	Additional seed cost of cultivar, yield reduction due to cultivar	Avoid high disease levels	Varieties not always available. Factors such as yield, winter hardiness and lodging	

		blotch (<i>Drechlera teres</i>) of particular interest			may compromises disease resistance	
	Density: 300- 350 pl. m ⁻²	Sowing density	Additional seed cost of cultivar, yield reduction due to cultivar	Improved crop competiveness against weeds	Lodging	Reduced herbicide dose may become more efficient
Mechanical weeding		No				
Mineral Fertilization	March-April	Placement of nutrients	Mineral N/P/K fertilizer applications Total number of treatment operations	Improved crop competitiveness against weeds	None	25% reduction in herbicide input
	March-April	No of operations: 1 Standard total amount kg ha ⁻¹ : 20 P, 50 K	Mineral P/K fertilizers applications Total number of treatment operations			
	March-April	No of operations: 1 Total amount kg ha ⁻¹ : 120 N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	•			
Molluscicide		No				
Herbicide	April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Primary broad leaved weeds. Occasionally wild oat (<i>Avena fatua</i> L.) and remaining grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and farm structures and lack of sufficient capacity	Field assessment determines the need. Optimal timing can reduce the dose by 20-30%
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Rust, net-blotch, mildew, leaf scald (Rhynchosporium secalis)		Field assessment determines the need. Optimised timing and dose in practise, reduction potential already achieved
Insecticide	May	Chemical pest control	TFI of insecticide Total pesticide TFI	Aphids, cereal leaf beetle (Oulema spp.)		Field assessment, spraying according to the

			Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations		need
Growth regulator		No			
Other chemical product		No			
Biological control product (elicitor, pheromone)		No			
Irrigation		No			
Harvest	Mid-August	Operation: classic (no additional cost) No: 1 Yield 4.9 t ha ⁻¹	Fuel consumption at harvest		
		Harvest techniques: collecting weed seeds during harvest operation, spot mapping of individual weed species during harvest operation	Fuel consumption at harvest	Prevention of weed seed return – less future weed problems	Reduction potential unknown
Catch crop after crop 5 in rotation II	Late August	Catch crop		Suppresses weed growth in the autumn	Unknown

UK, AS

Crop protection strategy: principle components of the proposed AS according to the main pest risks identified in the current system

Pest	Scale	Main crop protection tactics	Aim Impact on pests	Others impacts disadvantages & advantages	Estimated % TFI change compared to an average farmer
					practicing the Current System (CS)
WEEDS	Cropping system	Introduction of spring crops and greater taxonomic diversity of crops for pest management, especially containment of black grass and other grass weeds. Total herbicide (glyphosate) in February - April pre-drilling or pre-emergence.	Control of weeds: allows use of total herbicide in spring; any inversion cultivation to create seed-bed benefits grass weed (especially black grass) control and reduces weed seed bank. Crop diversification to reduce pest pressure and foster diversity of natural enemies	Advantages: Spreading workload/flexibility Boost yield of following crop Potential value of overwinter stubbles, weeds and volunteers to invertebrates and birds prior to spring beans. Spring crops yield less but gross margin is likely to be less affected due to premiums for milling wheat or malting barley, increased proportion of first wheats and better pest management.	See individual crops
		Minimise tillage and chop straw wherever possible. Before spring crops plough where necessary (in November for cereals, February/March for beans) to prepare for a spring seed-bed and/or for grass weed management especially blackgrass. Minimum tillage before oilseed rape with propyzamide application for black grass control.	Conserve soil-overwintering and epigeal invertebrate seed predators Grass weed control	Advantages of minimising tillage: Less fuel/time Reduce CO ₂ emissions Reduce wear of agricultural machinery Preserve soil structure, maintain moisture Conserve soil inhabiting natural enemies of all pests Decrease fertiliser use by increased nutrient cycling Reduce soil erosion and run-off Better control of broad-leaved weeds Disadvantages: perennial weeds more difficult to control with minimised tillage Some increased need for herbicides and molluscides likely.	
		Broadcast OSR seed into cereal stubble or wide row spacing of OSR to minimise necessary tillage.	Conserve soil-overwintering and epigeal invertebrate seed predators	Advantages: As for minimising tillage	
	Mon	Use higher seed rates and cultivars	Control weeds by competition to	Advantages: Reduced costs & environmental impact.	See individual crops

	with strong competitiveness where weeds are problematic	reduce herbicide resistance pressures	Reduced resistance risk	
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need	Effective pest control, reduce risk of resistance	Advantages: Reduced costs & environmental impact. Reduced resistance risk	No change (herbicide)
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact. Reduced resistance risk	See individual cro
Crop: Winter wheat	Use higher seed rates and cultivars with strong competitiveness where weeds are problematic			-21% herbicide TF +22% fungicide T because more dens crop is more humi
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need			No change (herbicide)
	Spot mapping and targeting of weeds			-10% herbicide
Crop: Spring wheat	Use cultivars with strong competitiveness where weeds are problematic.	Control weeds by competition	Advantages: Reduced costs & environmental impact Reduced resistance risk	-33% herbicide TF +17% fungicide T because more competitive crop
	Plough in November if necessary to prepare for a spring seed-bed and for weed management but minimise tillage where possible.			more dense & hun
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact Reduced resistance risk	-15% herbicide
Crop spring barley	Use higher seed rates and cultivars with strong competitiveness where weeds are problematic.	Control weeds by competition	Spring crops yield less but gross margin is likely to be less affected (see 'cropping system' above)	-33% herbicide TF +17% fungicide T because more competitive crop
M	Plough in November if necessary to prepare for a spring seed-bed and for weed management but minimise lagger possible.	Page 94 of		more dense & hum

mapping and targeting of	Target herbicide at weeds		-15% herbicide
h in February/March if sary for weed management create a seed-bed but hise tillage where possible. mapping and targeting of	Target herbicide at weeds	Advantage: Value of overwinter stubbles, weeds and volunteers to invertebrate s and birds. Advantages: Reduced costs & environmental impact Reduced resistance risk	-30% herbicide
nising tillage, where possible casting seed into cereal e or drilling into wide-rows cm)			
napping and targeting of	Target herbicide at weeds		-10% herbicide
st WOSR after swathing		Eliminates the need for a desiccant	-14% herbicide
de non-crop refugia and ces for natural enemies: scale: beetle banks, wild ower margins, grassy margins, dges. cape scale: maintain spatial d temporal diversity of opping; rotations including an tomophilous flowering crops //OSR, S beans); diversity of n-crop areas, e.g. woodland, me cover; high connectivity non-crop habitats to facilitate ovement of natural enemies.	Maintain populations of natural enemies for crops by providing them with permanent habitats as sources alternative prey and as refugia from which to colonise cropped areas. Maintain diversity and abundance of natural enemies in the agricultural landscape. Maintain large-scale connectivity of meta-populations of natural enemies to ensure their survival and ability to move in the landscape in order to provide services in cropped areas.		-10% insecticide
uction of spring crops and onomic diversity of crops	Break "green bridge" for pests Diverse cropping increases the	Potential value of overwinter stubbles, weeds and volunteers to invertebrate predators prior to spring beans. Increased	-5% insecticides
non-covemo	erop habitats to facilitate ent of natural enemies. n of spring crops and	survival and ability to move in the landscape in order to provide services in cropped areas. Break "green bridge" for pests Diverse cropping increases the	survival and ability to move in the landscape in order to provide services in cropped areas. Break "green bridge" for pests Potential value of overwinter stubbles, weeds and volunteers to

	for pest management,	diversity of resources for natural enemies and their spatial and temporal spread.	taxonomic diversity of crops reduces pest pressure and maintains greater diversity of natural enemies. Flowering crops benefit invertebrate natural enemies and pollinators	
	Minimising tillage where possible.	Conserve soil-overwintering and epigeal natural enemies (invertebrates, and entomopathogens) of insect pests	Advantage: Reduced impact on natural enemies and environment, reduced TFI.	-10% insecticides
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.	Controlling insect pests according to economic thresholds Optimal timing of pest control	Advantages: Conserve invertebrate biodiversity including natural enemies & pollinators, reduced TFI, reduced risk of resistance.	see individual crops (below)
Crop: winter wheat	Minimising tillage especially before first wheat after OSR.	Conserves important soil- overwintering natural enemies, especially parasitoids of OSR pests.		see cropping system above
	Use of resistant cultivars	Orange wheat blossom midge resistance where available (not in bread-making wheat in 2009)		-12% insecticides
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-10% insecticides
Crop: Spring wheat	Plough if necessary for weed management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible.			see cropping system above
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision prices stems.	Page 96 of		-10% insecticides

Crop: Spring barley	Plough if necessary for weed management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible.			see cropping system above
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-50% insecticides
Crop: Spring beans	Minimise tillage where possible.			see cropping system above
Crop: Winter OSR	Minimising tillage before and after OSR. Where possible broadcasting seed into cereal stubble or drilling into wide-rows (~50 cm)	Minimum tillage after OSR conserves parasitoids of OSR pests as well as epigeal predators.		see cropping system above further -20% insecticide due to conservation of WOSR parasitoids
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-75% insecticides
Cropping system	Introduction of spring crops and greater taxonomic diversity of crops for disease management.	Break "green bridge" for diseases. Reduce inoculums carryover from season to season. Reduces TFI		-10% fungicides
•	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, where possible using economic thresholds and decision support systems.	Page 97 of	Advantage: reduces resistance risk	
	Spring barley Crop: Spring beans Crop: Winter OSR	management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible. Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems. Crop: Spring beans	management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible. Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems. Crop: Spring beans	management and to create a seed- bed in spring (in autumn on heavy land) but minimise tillage where possible. Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using conomic thresholds and decision support systems. Crop: Winter OSR. Where possible broadcasting seed into cereat stubble or drilling into wide-rows (~50 cm) Minimising tillage before and after OSR. Where possible broadcasting seed into cereat stubble or drilling into wide-rows (~50 cm) Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using conomic thresholds and decision support systems. Break "green bridge" for diseases. Reduce inculums carryover from season to season. Reduces TFI Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using conomic thresholds and decision support systems. Break "green bridge" for diseases. Reduce inculums carryover from season to season. Reduces TFI Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, where possible using conomic thresholds

	Crop: winter wheat	Use of more resistant cultivars	Advantage: reduces TFI, specifically reliance on "azole" fungicides Disadvantage: Some resistant cultivars yield less that non-resistant	-10% fungicides
	Crop: Spring wheat	Use of more resistant cultivars	Advantage: reduces TFI, specifically reliance on "azole" fungicides Disadvantage: Some resistant cultivars yield less that non-resistant	-10% fungicides
	Crop: Spring barley	Use of more resistant cultivars	Advantage: reduces TFI, specifically reliance on "azole" fungicides Disadvantage: Some resistant cultivars yield less that non-resistant	-10% fungicides
	Crop: Spring beans	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need	Advantage: reduces resistance risk	-10% fungicides
	Crop: Winter OSR	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.	Advantage: reduces resistance risk	-5% fungicides
SLUGS	Cropping System	Where slugs are a severe problem, bale and cart straw and/or plough; roll twice after drilling.	Advantage: reduces TFI, risk of pesticide leaching and entry in to water-courses	-20% molluscicide
		Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.	Advantage: reduces TFI	-20% molluscicide
	M	Conserving slug predators, particularly carabid beetles and birds by landscape management and provision of overwinter stubbles		-5% molluscicides

PIGEONS	Crop: OSR	If pigeons a severe problem, optimise sowing density/row width to provide a "closed canopy"	<u>Disadvantages</u> : High humidity from a "closed canopy" can increase disease risk The potential advantages of wide rows are lost	

LANDSCAPE MANAGEMENT PRACTICES

Landscape	Practice	DEXiPM	Observations
management		inputs	
INSECT PESTS			
Field margin	Provide non-crop refugia and resources for natural enemies: beetle banks, wild flower margins, grassy margins, hedges.		Maintain populations of natural enemies for crops by providing them with permanent habitats as sources alternative prey and as refugia from which to colonise cropped areas.
Crop areas	Maintain spatial and temporal diversity of cropping;		Crops are the largest part of arable landscapes. Crop type has more impact in determining invertebrate communities than does husbandry. Diverse cropping increases the diversity of resources offered to natural enemies and their spatial and temporal spread.
	Rotations including an entomophilous crop (e.g. WOSR);		Oilseed rape has a very diverse invertebrate community and is likely to be of value to many natural enemies as well as pollinators.
	Inclusion of spring crops provides overwinter stubbles that support invertebrate predators		There is insufficient knowledge to determine the optimal spatial or temporal arrangement of cropping for invertebrates, or to determine the optimal field size.
Non-crop areas	Maintain or create diversity of non-crop areas, e.g. woodland and game cover;		Maintain diversity and abundance of natural enemies in the agricultural landscape.
	Maintain or create high connectivity of non-crop habitats to facilitate movement of natural enemies.		Maintain large-scale connectivity of meta-populations of natural enemies to ensure their survival and ability to move in the landscape in order to provide services in cropped areas.
DISEASES	No clear evidence for benefits from land management for diseases as yet.		
WEEDS	No clear evidence for benefits from land management for weeds as yet.		

Crop management practices for UK system AS

Crop		Practice and description		Impact on pests	Disadvantages	Comments on pesticide reduction (see
management	(decade)	Practice and description	in detail in the attached	impact on pests	Disadvantages	'Crop protection strategy' table above
management	(decade)		table)			for detailed listing of reductions by
			table)			crop)
CROP	4 years	I - winter wheat	No of crops, of late-harvest	Maximise potential to		TFI of current most common crop
SEQUENCE	+ years	- spring beans (or other non-	crops, crop type (winter,	contain blackgrass		sequence (winter wheat, winter wheat,
BEQUEITCE		brassica dicot spring crop)	spring, summer, perennial),	and other pests by		winter OSR) with current crop
		- winter wheat		winter breaks with no		management practices: 6.4 (2006 data)
		- winter wheat - winter oilseed rape	cover	crop.		management practices : 0.4 (2000 data)
	5 years	winter onseed tape	Cover	crop.		Estimated TFI for AS crop sequences
		II - winter wheat				using current practices:
		- spring beans (or other non-				using current practices.
		brassica dicot spring crop)		Diversification of		I: representing a 6% reduction
		- winter wheat		crops reduces pest		1. Topicsening a 570 reduction
		- spring malting barley/spring		pressure and fosters		II: representing a 16-18% reduction
		milling wheat		diversity of natural		ii. Tepresenting a 10 1070 reduction
		- winter oilseed rape		enemies		
		winter onseed tape		enerines		
CROPS 1 and	Weeds: con	tain grass weeds, especially black gra	ISS		L	
		esistant variety, fungicide applied 2-3		red).		
& II:		nimising tillage, use of resistant cultiv				
WINTER		sticide reduction for this crop in relati		1		
WHEAT	1	•	•			
Pre drilling	Early	Minimise cultivation	Superficial tillage between	Maintain soil		
tillage	September			inhabiting beneficials		
Drilling	Mid-late	Criteria for variety choice ranked	Additional seed cost of	Reduced disease	Varieties not always available.	
	September	according to priority: 1) Bread-	cultivar, yield reduction due to	level.	The other criteria may	
		making quality, 2) yield, 3) Disease	cultivar	Minimise midge	compromise disease resistance	
		resistance rating primarily Septoria,		damage.		
		4) resistance to orange wheat				
		blossom midge midge.				
		Sow mid September with			May increase slug problems	The 30% TFI reduction potential
		insecticide-dressed seed. Avoid		Barley Yellow Dwarf	on clay soils	associated with the use of (improved) seed
		earlier sowing to reduce aphid risk.		Virus and reduced		dressings has probably already been
				emergence of winter		realised.
				annual weeds		
Mechanical		No	Superficial tillage in crops			
weeding						

Mineral Fertilization		Maintenance dressings in accordance with soil type.	Total number of treatment operations			
	Early April	Total amount kg ha ⁻¹ : 200 N for crop	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide			Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	August- September	Chemical weed control		Pre-drilling or pre- emergence herbicide		
	September to October		TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Weed control, especially against grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and task prioritisation problems and lack of sufficient capacity Increased TFI Risk of resistance	Preceding oilseed rape or spring dicot crop maximises black grass containment.
	April		TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Control of broad leaved weeds and any remaining grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and task prioritisation problemsand lack of sufficient capacity Increased TFI Risk of resistance	
Fungicide	March- June		TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide	Control of Septoria Rust, mildew	Increased TFI, risk of resistance'	Field assessment should determine need. The TFI reduction potential associated with field assessment has already been realised as the optimised timing and dose is already in practise.

	1		1: .:	1	1	
			application			
			Total number of treatment			
			operations			
Insecticide	Mid	Sow with insecticide-dressed seed		Control of aphids		
	September			transmitting BYDV		
	1			(e.g. Sitobion avenae)		
	Late	Chemical pest control required only		Control of aphids		Insecticide seed treatment (targeted on
	October,	if aphids active 6 weeks after drilling		transmitting BYDV		crop) often avoids need for less targetable
	early	in a mild autumn because of use of		(e.g. Sitobion avenae)		insecticide spray.
	November	treated seed and avoidance of		(c.g. Shobion avenue)		insecticide spray.
	November	sowing before mid September (see				
	3 61 1	drilling above).		0 1 0 111		
	Mid	In a warm autumn insecticide		Control of aphids		
	October	application in accordance with DSS		transmitting BYDV		
		advice		(e.g. Sitobion avenae)		
	May-June	Chemical pest control	TFI of insecticide	Control of aphids /	Increased TFI, risk of non-	Control of aphids according to field
			Total pesticide TFI	orange wheat	target effects on beneficial	assessments and threshold. Control of
			Pesticide mobility	blossom midge	insects, risk of resistance	midge according to monitoring thresholds
			Pesticide eco-toxicity	(Sitodiplosis		on pheromone traps and counts on ears.
			Soil cover at pesticide	mosellana)		Some midge-resistant varieties but not in
			application	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		bread-making wheats.
			Total number of treatment			bread making wheats.
			operations			
Growth	April	Chemical control, Plant Growth	Total pesticide TFI	Decreased risk of	None	N-limitations, variety choice, seed rate and
	Apm				None	
regulator		Regulation	Pesticide mobility	lodging		sowing date influence the need for PGR
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Other		No				
chemical						
product						
Biological		No				
control	1					
product						
(elicitor,	1					
pheromone)	J					
Irrigation	1	No				
	End of	Harvest with straw chopping and	Fuel consumption at harvest			
Harvest		marvest with straw chopping and	iruei consumption at narvest	1111		_1

	August	spreading. Yield 8.0 t ha ⁻¹				
CROP 2 in rotations I and II: SPRING BEANS	Weeds: Ma Pests: break Diseases: br Potential pe	n of spring crops and greater taxonom ximises possibilities for containment of king green bridge for cereal aphids, per reaking green bridge esticide reduction for this crop in relati	of grass weeds, particularly black sticide targeting and stewardship on to current practices: 24%	k grass.	·	
Pre drilling tillage	February / March	Plough cultivation if necessary to create a seed-bed and for weed management	Plough	Buries weed seed, helps control slugs	Bad for soil-inhabiting beneficials	
Drilling	March – April	Criteria for variety choice ranked according to priority: 1) yield, 2) quality				
Mechanical weeding		No				
Mineral Fertilization	March- April	No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
Organic Fertilization		No				
Molluscicide		If necessary (unlikely)	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	control slugs		
Herbicide	February- April	Pre-tillage or pre-emergence chemical weed control (glyphosate)	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	control weeds		
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity	· 6		

			Coil acrear at masticida			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Insecticide	April	Chemical pest control	TFI of insecticide	Pea and bean weevil		
			Total pesticide TFI	(Sitona lineatus)		
			Pesticide mobility	control		
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
	Late May,	Chemical pest control	TFI of insecticide	Bruchid beetle and		
	early June	Chemical pest condor	Total pesticide TFI	aphid control		
	carry varie		Pesticide mobility	apma control		
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Growth		No	operations			
		INO				
regulator	1	NY .				
Other		No				
chemical						
product						
Biological		No				
control						
product						
(elicitor,						
pheromone)						
Irrigation		No				
Harvest	Mid-	Harvest with straw chopping and	Fuel consumption at harvest			
	August	spreading.				
		Yield c. 5 t ha ⁻¹				
CROP 4 in	Introduction	of spring crops to reduce pest pressu	are and foster diversity of natura	al enemies.		
rotation II		ximises possibilities for containment of				
SPRING		aking green bridge for cereal aphids,				
BARLEY		reaking green bridge, resistant variety		1		
		esticide reduction for this crop in relati				
Pre drilling			Plough	Buries weed seed	Bad for soil-inhabiting	
110 urming			1	Buries weed seed.	Pag 101 boll lilliagining	

tillage	April	weed management and to create a seed-bed		helps control slugs	beneficials	
Drilling	March- April	Criteria for variety choice ranked according to priority: 1) yield, 2) malting quality, 3) leaf scald, 4) net-blotch.	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced disease level	Varieties not always available. The other factors may compromise disease resistance	
	Density: 350-400 pl. m ⁻²		Additional seed cost of cultivar, yield reduction due to cultivar	Improved crop competiveness against weeds	Lodging	
Mechanical weeding		No				
Mineral Fertilization	March- April	No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
	March- April	No of operations: 1 Total amount kg ha ⁻¹ : 100 N	Mineral N fertilizer applications. Total number of treatment operations			
Organic Fertilization		No				
Molluscicide		If necessary (unlikely)	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	February- April	Pre-tillage or pre-emergence chemical weed control (glyphosate)	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	control weeds		
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility	leaf scald (Rhynchosporium secalis), net-blotch, mildew.	Increased TFI, risk of resistance	Field assessment should determine need. The TFI reduction potential associated with field assessment has already been realised as the optimised timing and dose is

			Soil cover at pesticide			already in practice.				
			application							
			Total number of treatment							
			operations							
Insecticide	May-June	Chemical pest control	TFI of insecticide	Control of aphids	Increased TFI, risk of non-	Control of aphids according to field				
			Total pesticide TFI		target effects on beneficial	assessments and threshold.				
			Pesticide mobility		insects, risk of resistance					
			Pesticide eco-toxicity							
			Soil cover at pesticide							
			application							
			Total number of treatment							
			operations							
Growth		No								
regulator		NY.								
Other		No								
chemical										
product		No								
Biological control		NO								
product										
(elicitor,										
pheromone)										
Irrigation		No								
Harvest	Mid-	Harvest with straw chopping and	Fuel consumption at harvest							
Tiai vest	August	spreading.	i dei consumption at hai vest							
	August	Yield 5.1 t ha ⁻¹								
CROP 4 in	Introduction of spring crops to reduce pest pressure and foster diversity of natural enemies.									
rotation II		ximises possibilities for containment of								
SPRING		aking green bridge for cereal aphids,								
WHEAT		reaking green bridge, resistant variety		1						
	Potential pesticide reduction for this crop in relation to current practices: 27%									
Pre drilling	March-			Buries weed seed,	Bad for soil-inhabiting					
tillage	April	weed management and to create a		helps control slugs	beneficials					
		seed-bed								
Drilling	March-	Criteria for variety choice ranked	Additional seed cost of		Varieties not always available.					
	April	according to priority: 1) bread-	cultivar, yield reduction due to	of take-all and rust.	The other factors may					
		making quality, 2) yield, 3) take-all,	cultivar		compromise disease resistance					
		4) rust.								
	Density:	Sowing density	Additional seed cost of	Improved crop	Lodging					
M	350-400 pl.		cultivar, yield reduction due to	competiveness						
					7					

	m^{-2}		cultivar	against weeds		
Mechanical		No				
weeding						
Mineral	March-	No of operations: 1	Mineral P/K/S fertilizers			
Fertilization	April	Maintenance dressings in accordance				
		with soil type.	Total number of treatment			
			operations			
	March-	No of operations: 1	Mineral N fertilizer			
	April	Total amount kg ha ⁻¹ : 140 N	applications. Total number of			
			treatment operations			
Organic		No				
Fertilization		70 (111 1)				
Molluscicide		If necessary (unlikely)	Total pesticide TFI			
			Pesticide mobility			
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application Total number of treatment			
			operations			
Herbicide	February-	Pre-tillage or pre-emergence	TFI of herbicide	control weeds		
Herbicide	April	chemical weed control (glyphosate)	Total pesticide TFI	control weeds		
	Apm	chemical weed control (gryphosate)	Pesticide mobility			
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Fungicide	May-June	Chemical disease control	TFI of fungicide	Rust, net-blotch,	Increased TFI, risk of	Field assessment should determine need.
	inacy come		Total pesticide TFI	mildew.	resistance	The TFI reduction potential associated
			Pesticide mobility			with field assessment has already been
			Pesticide eco-toxicity			realised as the optimised timing and dose is
			Soil cover at pesticide			already in practice.
			application			
			Total number of treatment			
			operations			
Insecticide	May-June	Chemical pest control	TFI of insecticide	Control of orange	Increased TFI, risk of non-	Control of aphids according to field
	-	_	Total pesticide TFI	wheat blossom midge	target effects on beneficial	assessments and threshold. Control of
			Pesticide mobility	(Sitodiplosis	insects, risk of resistance	midge according to monitoring thresholds
			Pesticide eco-toxicity	mosellana) and		on pheromone traps and counts on ears.
• • • • • • • • • • • • • • • • • • • •	ODO		Soil cover at pesticide	aphids		

			application			
			Total number of treatment operations			
Growth		No	operations			
regulator						
Other		No				
chemical						
product		.				
Biological		No				
control product						
(elicitor,						
pheromone)						
Irrigation Service		No				
Harvest	Mid-	Harvest with straw chopping and	Fuel consumption at harvest			
	August	spreading.	-			
		Yield c. 5.5 t ha ⁻¹				
CROP 4 in	Weeds: autu	imn/spring herbicide necessary				
rotation I and		nemical control, resistant varieties, son	ne DSS information available			
		nimising tillage before and after OSR,	wide-rows (~50 cm), pesticide to	argeting and stewardsh	ip	
	Reduced he					
WINTER	Potential pe	sticide reduction for this crop in relati	on to current practices: 32%			
OILSEED						
RAPE Drilling	mid August	Criteria for variety choice ranked	Additional seed cost of		Good information on disease	
Dilling	imu-August	according to priority: 1) yield, 2)	cultivar, yield reduction due to		resistance from CEL	
		Disease resistance rating (Phoma,	cultivar		recommended lists	
		Light leaf spot), 3) seed price	Caravar		recommended lists	
	mid-August	Minimise tillage, broadcast seed	Minimum tillage between			
		into cereal stubble or drill into	crops			
		wide-rows (~50 cm) behind				
		subsoiler tines		11.6		
					7	

Page 109 of

	mid-August	Density: 25 - 50 plants m ⁻¹	Sowing density			
	mid-August	Insecticide and fungicide seed dressing		Control flea beetles for 6 weeks		Reduced need for autumn insecticide spray
Mineral Fertilization		No of operations: 1 Maintenance dressings in	Mineral P/K/S fertilizers applications			
rerunzauon		accordance with soil type.	Total number of treatment operations			
	Mid- September / Mid-March	No of operations: 1-2 Total amount kg ha ⁻¹ : 180 N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide	September- October	If necessary.	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			Depends on levels in field, assessed by scouting. Often requires more than one treatment
Herbicide	Pre- emergence (August- September)	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Grass weeds, mayweed, cleavers	Increased TFI Risk of resistance	Field assessment determines the need.
	Spring	Chemical weed control		Grass weed control according to need		
Fungicide	October - December	Chemical phoma control (against <i>Phoma lingam</i> in south of UK, <i>Pyrenopeziza brassicae</i> in north of UK), 1-2 treatments	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Phoma, Light leaf spot	Increased TFI, risk of resistance	
	April - May	Chemical disease control	TFI of fungicide	Sclerotinia stem rot	Increased TFI, risk of	Simple forecast system now available,

			Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	(Sclerotinia sclerotium)	resistance	reductions can be made during non- epidemic years (20 – 50% reduction)
Insecticide	September - December	Possible chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Adult cabbage stem flea beetle (Psylliodes chrysocepthala)	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	According to threshold (September to October: leaf damage or adults in water traps; November to December: larvae in plants)
	April (green to yellow bud stage)	Possible chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Pollen beetle (Meligethes aeneus)	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	Only if field threshold surpassed
	May	Possible chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Cabbage seed weevil, (Ceutorhynchus assimilis) & Brassica pod midge (Dasineura brassicae)	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance especially in pollen beetles	Only if field threshold surpassed
Growth		No				
regulator						
Other chemical product		No				
Biological control product (elicitor,	to o o	No	Total number of treatment operations			

pheromone)				
Irrigation	No	Irrigation		
Harvest	Harvest with straw chopping and spreading. GPS controlled combine Expected yield: 3.4 t ha ⁻¹	Fuel consumption at harvest		Fuel savings

UK IS1-systems (differences from AS are written in bold)

Crop protection strategy: principle components of the proposed IS1 according to the main pest risks identified in the current system

Pest	Scale	Main crop protection tactics	Aim	Others impacts	AS:	IS1: Estimated %
			Impact on pests		Estimated % TFI	TFI change
					change compared to an	compared to an
					average farmer	average farmer
					practicing the Current	practicing the
					System (CS)	Current System
WEEDG	C	Lutus dusting of against agents	Control of weeds: allows use	A decrete case Connection and and Affect in the literature	Car in dissideral angua	(CS)
WEEDS	Cropping	Introduction of spring crops (optionally increasing their	of total herbicide in spring	Advantages: Spreading workload/flexibility Boost yield of following crop	See individual crops	See individual crops
	system	proportion in the rotation) and	and summer; any inversion	Potential value of overwinter		
		greater taxonomic diversity of crops	cultivation to create seed-	stubbles, weeds and volunteers		
		or fallow for pest management,	bed for spring crop benefits	to invertebrates and birds prior		
		especially containment of black grass	grass weed (especially black	to spring beans and in fallow .		
		and other grass weeds. For spring	grass) control and reduces	Spring crops yield less but gross margin is		
		crops, herbicide in March/April pre-	weed seed bank.	likely to be less affected due to premiums		
		drilling.	weed seed sum.	for milling wheat or malting barley,		
		Consider fallow if grass weeds a		increased proportion of first wheats and		
		severe problem and apply		better pest management. No income from		
		herbicide in March/April and July-		fallow but long term benefit for black		
		September.		grass control.		
		Minimise tillage and chop straw	Conserve soil-overwintering	Advantages: Less fuel/time		
		wherever possible.	and epigeal invertebrate seed	Reduce CO ₂ emissions		
			predators	Reduce wear of agricultural machinery		
		Before spring crops plough where		Preserve soil structure, maintain moisture		
		necessary (in November for cereals,		Conserve soil inhabiting natural enemies of		
		February/March for beans) to prepare		all pests		
		for a spring seed-bed and/or for grass		Decrease fertiliser use by increased nutrient		
		weed management especially		cycling		
		blackgrass. Option of cultivation of		Reduce soil erosion and run-off		
		fallow in May if grass weeds a		<u>Disadvantages</u> : perennial weeds more		
		severe problem. Minimum tillage		difficult to control Some increased need for herbicides and		
		before oilseed rape with propyzamide				
		application for black grass control.		molluscides likely.		
		Drilling OSR into wide-rows (~50	Conserve soil-overwintering	Advantages: As for mimising tillage and		See individual crops
		cn) to minimise necessary tillage,	and epigeal invertebrate seed	allows mutrient placement to		

	enable inter-row weed management (mechanical weeding where herbicide resistance is a problem, or targeted herbicide) and enable targeted applications of other pesticides and nutrients.	predators Nutrient placement avoids fertilising weeds Mechanical weeding reduces herbicide resistance pressures	target crop plants and reduce leaching risk. Reduced pesticide TFI Disadvantage: high fuel and labour costs of mechanical weeding.		
	Use higher seed rates and cultivars with strong competitiveness where weeds are problematic	Control weeds by competition	Advantages: Reduced costs & environmental impact Reduced resistance risk	See individual crops	See individual crops
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need	Effective pest control, reduce risk of resistance	Advantages: Reduced costs & environmental impact		No change (herbicide)
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact Reduced resistance risk		See individual crops
	GPS – controlled traffic system		Advantages: Substantial fuel/herbicide savings Less soil compaction Less crop damage) -5% herbicide)
	GPS – controlled pesticide applications		Advantage: reduces TFI)
Crop: winter wheat	Use higher seed rates and cultivars with strong competitiveness where weeds are problematic	Control weeds by competition	Advantages: Reduced costs & environmental impact Reduced resistance risk	-21% herbicide, +22% fungicide because closed canopy more humid	-21% herbicide TFI, +22% fungicide TFI because more dense crop is more humid
	Spot mapping and targeting of weeds		Advantages: Reduced costs & environmental impact Reduced resistance risk	-10% herbicide	-10% herbicide
Crop: spring wheat	Use cultivars with strong competitiveness where weeds are problematic Plough in November if necessary to prepare for a spring seed-bed and for	Control weeds by competition	Advantages: Reduced costs & environmental impact Reduced resistance risk	-33% herbicide TFI, +17% fungicide TFI because more competitive crop more dense & humid	-33% herbicide TFI, +17% fungicide TFI because more competitive crop more dense & humid
er	rying crop protection	Page 1	14 of 6		

	tillage where possible.				
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact Reduced resistance risk	-15% herbicide	-15% herbicide
Crop: spring barley	Use higher seed rates and cultivars with strong competitiveness where weeds are problematic Plough in November if necessary to prepare for a spring seed-bed and for weed management but minimise tillage where possible.	Control weeds by competition	Advantages: Reduced costs & environmental impact Reduced resistance risk	33% herbicide TFI, +17% fungicide TFI because more competitive crop more dense & humid	-33% herbicide Ti +17% fungicide Ti because more competitive crop more dense & hur
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact Reduced resistance risk	-15% herbicide	-15% herbicide
Crop: Spring beans	Plough in February/March if necessary for weed management and to create a seed-bed but minimise tillage where possible.		Advantage: overwinter stubbles of value to invertebrates and birds		
	Spot mapping and targeting of weeds	Target herbicide at weeds	Advantages: Reduced costs & environmental impact Reduced resistance risk	-30% herbicide	-30% herbicide
Crop: Winter OSR	Drilling into wide-rows (~50 cm) to minimise necessary tillage, enable inter-row weed management (mechanical weeding where herbicide resistance is a problem, or targeted herbicide using bandspraying) and enable targeted applications of insecticides and fungicides and nutrients.				-9% herbicide
M4	Spot mapping and targeting of weeds	Target herbicide at weeds		-10% herbicide	-10% herbicide
	A trient placement	Target nutrient at crop	Advantage: reduce inorganic nutrient		

			plants and avoid fertilising weeds	input		
		Harvest WOSR after swathing		Eliminates the need for a desiccant	-14% herbicide	-14% herbicide
		Use cultivars that are resistant to pod shattering and ripen evenly		Advantage: timing of harvest easier, less risk of seed loss, less likely to need desiccant		
	Crop: Fallow	Chemical and if necessary mechanical control of competitive grass weeds, especially black grass: overwinter in stubble to allow weed seed germination; two total herbicides in March/April and July-September; option of possible cultivation in May if grass weeds severe; minimise tillage before following crop.		Disadvantages: herbicides reduce potential value of fallow to invertebrate natural enemies and cultivation is detrimental to epigeal predators.		
		Spot mapping and targeting of weeds	Target herbicide at weeds			-15% herbicide
INSECT PESTS	Landscape	Provide non-crop refugia and resources for natural enemies: field scale: beetle banks, wild flower margins, grassy margins, hedges. landscape scale: maintain spatial and temporal diversity of cropping; rotations including an entomophilous flowering crops (WOSR, S beans); diversity of non-crop areas, e.g. woodland, game cover; high connectivity of non-crop habitats to facilitate movement of natural enemies.	Maintain populations of natural enemies for crops by providing them with permanent habitats as sources alternative prey and as refugia from which to colonise cropped areas. Maintain diversity and abundance of natural enemies in the agricultural landscape. Maintain large-scale connectivity of meta- populations of natural enemies to ensure their survival and ability to move in the landscape in		-10% insecticide	-10% insecticide
4	en	ng crop protection	1	16 of 6		

		order to provide services in cropped areas.			
Cropping system	Introduction of spring crops, greater taxonomic diversity of crops and/or fallow for pest management.	Break "green bridge" for pests. Diverse cropping increases the diversity of resources for natural enemies and their spatial and temporal spread.	Potential value over winter of stubbles, weeds and volunteers to invertebrates and birds	-5% insecticides	-5% insecticides
	Minimising tillage where possible.	Conserve soil-overwintering and epigeal natural enemies (invertebrates, and entomopathogens) of insect pests	Advantage: Reduced impact on natural enemies and environment, reduced TFI.	-10% insecticides	-10% insecticides
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.	Controlling insect pests according to economic thresholds Optimal timing of pest control	Advantages: Conserve invertebrate biodiversity including natural enemies & pollinators, reduced TFI, reduced risk of resistance	see individual crops (below)	see individual cro (below)
	GPS – controlled traffic system		Advantages: Reduced costs, environmental impact and TFI) -5% insecticide
	GPS – controlled pesticide applications		Advantages: Substantial fuel/insecticide savings Less soil compaction Less crop damage)
Crop: winter wheat	Minimising tillage especially before first wheat after OSR.	Conserves important soil- overwintering natural enemies, especially parasitoids of OSR pests.		see cropping system above	see cropping syst above
	Use of resistant cultivars	Orange wheat blossom midge resistance (all qualities of wheat)		-12% insecticides	-25% insecticides
Mon	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using conopic thresholds and decision		17 of	-10% insecticides	-5% insecticides

	support systems.				
Crop: spring wheat	Plough if necessary for weed management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible.			see cropping system above	see cropping system above
	Use of resistant cultivars	Orange wheat blossom midge resistance			-65% insecticides
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-10% insecticides	-10% insecticides
Crop: spring barley	Plough if necessary for weed management and to create a seed-bed in spring (in autumn on heavy land) but minimise tillage where possible.			see cropping system above	see cropping system above
	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-50% insecticides	-50% insecticides
Crop: Spring beans	Minimise tillage where possible.			see cropping system above	see cropping system above
beans	Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need		Advantage: reduces resistance risk		-45% insecticide
Crop: Winter OSR	Drilling into wide-rows (~50 cm) to minimise necessary tillage, and enable targeted applications of autumn insecticides.	Minimum tillage after OSR conserves parasitoids of OSR pests as well as epigeal predators.	Advantage: reduces TFI	see cropping system above further -20% insecticide due to conservation of	see cropping system above further -20% insecticide due to conservation of
Or	dura		18 of 6	WOSR parasitoids	WOSR parasitoids

		Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.			-75% insecticides	-75% insecticides
		Sow border trap crop for control of pollen beetles and other insect pests	Reduce pest invasion of main crop	Advantage: allow targeting of insecticides to trap crop only, reducing TFI and conserving beneficial insects.		-18% insecticides
	Crop: Fallow	Breaking green bridge for cereal aphids.				
		Minimise tillage: option of possible cultivation in May if grass weeds severe.	Conserving generalist epigeal predators of pests, particularly carabid beetles and spiders, by provision of overwinter stubbles with undisturbed soil.	Advantage: support overwintering bird populations by provision of overwinter stubbles		
DISEASE	Cropping system	Introduction of spring crops (optionally increasing their proportion in the rotation) and greater taxonomic diversity of crops or fallow for pest management.	Break "green bridge" for diseases. Reduce inoculums carryover from season to season. Reduces TFI	Spring crops yield less but gross margin is likely to be less affected (see 'Weeds/cropping system' above)	-10% fungicides	-15% fungicides
		Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, where possible using economic thresholds and decision support systems.		Advantages: reduced resistance risk		See individual crops below
		GPS – controlled traffic system		Advantages: Substantial fuel/fungicide savings Less soil compaction Less crop damage) -5% fungicides)

+	Crop:	Use of more resistant cultivars		Advantage: reduces TFI, specifically	-10% fungicides	-20% fungicides
	winter	250 51 more resistant cultivals		reliance on "azole" fungicides	1070 Tungierues	2070 Taligioldos
	wheat			<u>Disadvantage</u> : Some resistant cultivars yield		
				less than non-resistant cultivars.		
	Crop:	Use of more resistant cultivars		Advantage: reduces TFI, specifically	-10% fungicides	-20% fungicides
	spring			reliance on "azole" fungicides		
	wheat			<u>Disadvantage</u> : Some resistant cultivars yield less that non-resistant		
-	Crop:	Use of more resistant cultivars		Advantage: reduces TFI, specifically	-10% fungicides	-20% fungicides
	spring			reliance on "azole" fungicides		
	barley			<u>Disadvantage</u> : Some resistant cultivars yield less that non-resistant		
-	Crop:	Pesticide targeting and stewardship:		Advantage: reduces resistance risk	-10% fungicides	-10% fungicides
	Spring beans	ensure effective use of pesticides strictly according to need				
		·				
	Crop: Winter	Use of multi-resistant cultivars, especially for control of Phoma and		Advantage: reduces TFI and reliance on limited chemistry		- 50% fungicides
	OSR	light leaf spot.		<u>Disadvantage</u> : Some resistant cultivars		
				don't yield as highly as conventional.		
		Pesticide targeting and stewardship:		Advantage: reduces resistance risk	-5% fungicides	-20% fungicides
		ensure effective use of pesticides				
		strictly according to need, using economic thresholds and decision				
		support systems.				
		Targeting of autumn fungicides to	Targets fungicides onto	Advantage: reduces TFI		-30% fungicides
		plants in rows	pathogens on plants			
	Crop: Fallow	Breaking green bridge for diseases				
	Cropping	Where slugs are a severe problem,		Advantage: reduces TFI, risk of pesticide	-20% molluscicide	-20% molluscicide
1	System	bale and cart straw and/or plough; roll twice after drilling.		leaching and entry in to water-courses		

		Pesticide targeting and stewardship: ensure effective use of pesticides strictly according to need, using economic thresholds and decision support systems.	Advantage: reduces TFI	-20% molluscicide	-20% molluscicide
		GPS – controlled traffic system	Advantages: Substantial fuel/molluscicide savings. Reduces TFI. Less soil compaction. Less crop damage		-3% molluscicide
		Conserving slug predators, particularly carabid beetles and birds by landscape management and provision of overwinter stubbles and fallow fields.		-5% molluscicides	-5% molluscicides (-10% molluscides in rotations with fallow)
PIGEONS	Crops: OSR	If pigeons a severe problem, optimise sowing density/row width to provide a "closed canopy"	<u>Disadvantages</u> : High humidity from a "closed canopy" can increase disease risk The potential advantages of wide rows are lost		

<u>IS1</u>

LANDSCAPE MANAGEMENT PRACTICES for UK system IS1 (Changes from AS in bold)

Landscape management	Practice	DEXiPM inputs	Observations
INSECT PESTS			
Field margin	Provide non-crop refugia and resources for natural enemies: beetle banks, wild flower margins, grassy margins, hedges.		Maintain populations of natural enemies for crops by providing them with permanent habitats as sources of alternative prey and as refugia from which to colonise cropped areas.
	Contour beetle banks on sloping fields to control soil erosion		Dual role for beetle banks
	Trap crop of early-flowering brassica around edge of WOSR crop		To concentrate pests, particularly pollen beetles, at the edge of the crop and protect the main crop from pollen beetle immigration at the vulnerable green-yellow bud stage. To enable any necessary insecticide treatment to be spatially targeted to the crop margin, reducing TFI and non-target impacts.
Crop areas	Maintain spatial and temporal diversity of cropping; Rotations including an entomophilous crop (e.g. WOSR);		Crops are the largest part of arable landscapes. Crop type has more impact in determining invertebrate communities than does husbandry. Diverse cropping increases the diversity of resources offered to natural enemies and their spatial and temporal spread. Oilseed rape has a very diverse invertebrate community and is likely to be of value to many natural enemies as well as pollinators. There is insufficient knowledge to determine the optimal spatial or temporal arrangement of cropping for invertebrates, or to determine the optimal field size.
Non-crop areas	Maintain or create diversity of non-crop areas, e.g. woodland and game cover;		Maintain diversity and abundance of natural enemies in the agricultural landscape.
	Maintain or create high connectivity of non-crop habitats to facilitate movement of natural enemies.		Maintain large-scale connectivity of meta-populations of natural enemies to ensure their survival and ability to move in the landscape in order to provide services in cropped areas.
DISEASES	No clear evidence for benefits from land management for diseases as yet.		
WEEDS	No clear evidence for benefits from land management for weeds as yet.		

Crop management practices for UK system IS1 (Changes from AS in bold)

J	Period (decade)	•	in detail in the attached table)			Comments on pesticide reduction (see 'Crop protection strategy' table above for detailed listing of reductions by crop)
CROP SEQUENCE	5 years	brassica dicot spring crop)	cover	Maximise potential to contain blackgrass and other pests by winter breaks with no crop or annual fallow.		TFI of current most common crop sequence (winter wheat, winter wheat, winter OSR) with current crop management practices: 6.4 (2006 data) Estimated TFI for IS1 crop sequences using current practices:
	4 years	IV - winter wheat - spring beans (or other non- brassica dicot spring crop) - spring malting barley/spring milling wheat / fallow - winter oilseed rape		Diversification of crops reduces pest pressure and fosters diversity of natural enemies		III: representing a 16-18% reduction IV: representing a 22-24% reduction
CROPS 1 and 3 in rotation III CROP 1 in rotation IV WINTER WHEAT	Diseases: re Insects: Min	tain grass weeds, especially black grass sistant variety, fungicide applied 2-3 tinimising tillage, use of resistant cultivations sticide reduction for this crop in relation	mings (To, T1, T2, T3 as requirers, pesticide targeting and stewa			
Pre drilling tillage	Early September	Minimise cultivation	, i	Maintain soil inhabiting beneficials		
Drilling	Mid-late	Criteria for variety choice ranked according to priority: 1) Breadmaking quality, 2) yield, 3) Disease resistance rating primarily Septoria, 4) resistance to orange wheat blossom midge midge.	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced disease	Varieties not always available. The other criteria may compromise disease resistance	
	4	Sow mid September with insecticide-dressed seed. Avoid earlier sowing to reduce aphid risk.		Reduced incidence of Barley Yellow Dwarf Virus and reduced emergence of winter		The 30% TFI reduction potential associated with the use of (improved) seed dressings has probably already been realised.
	enc diversifying of	TUPE	•	3 of		

				annual weeds		
Mechanical weeding		No	Superficial tillage in crops			
Mineral Fertilization	Early April	No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
	Early April	No of operations: 1 Total amount kg ha ⁻¹ : 200 N for crop 1 and 180 N for crop 3	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		no	Organic N fertilizer applications, Total number of treatment operations			
Molluscicide		If necessary	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	August- September	Chemical weed control		Pre-drilling or pre- emergence herbicide		
	September to October	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Weed control, especially against grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and task prioritisation problems and lack of sufficient capacity Increased TFI Risk of resistance	Preceding oilseed rape or spring dicot crop maximises black grass containment.
	April	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	remaining grass weeds	Optimal timing can be jeopardized by unfavourable weather conditions and task prioritisation problemsand lack of sufficient capacity Increased TFI Risk of resistance	
Fungicide	March- June	Chemical disease control, 2-3 reatments	TFI of fungicide Total pesticide TFI	Control of Septoria Rust, mildew	Increased TFI, risk of resistance	Field assessment should determine need. The TFI reduction potential associated

Insecticide	Mid September	Sow with insecticide-dressed seed Chemical pest control required only if	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Control of aphids transmitting BYDV (e.g. Sitobion avenae) Control of aphids		with field assessment has already been realised as the optimised timing and dose is already in practise Insecticide seed treatment (targeted on
	October	aphids active 6 weeks after drilling in a mild autumn because of use of treated seed and avoidance of sowing before mid September (see drilling above).		transmitting BYDV (e.g. Sitobion avenae)		crop) often avoids need for less targetable insecticide spray.
	May-June		TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	orange wheat blossom	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	Control of aphids according to forecasts and field assessments. Control of midge according to monitoring thresholds on pheromone traps and counts on ears. Midge-resistant wheat varieties.
Growth regulator	April		Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Decreased risk of lodging	None	N-limitations, variety choice, seed rate and sowing date influence the need for PGR
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation	F 1 2	No				
Harvest	End of	Harvest with straw chopping and	Fuel consumption at harvest			

	August	spreading. Yield 8.0 t ha ⁻¹				
CROP 2 in rotations III and IV: SPRING BEANS	Weeds: Ma Pests: break Diseases: b Potential pe	n of spring crops and greater taxonomic ximises possibilities for containment of xing green bridge for cereal aphids, pest reaking green bridge esticide reduction for this crop in relatio	grass weeds, particularly black icide targeting and stewardship n to current practices: 42%	grass.		
Pre drilling tillage	March	create a seed-bed and for weed management	Plough	Buries weed seed, helps control slugs	Bad for soil-inhabiting beneficials	
Drilling	March – April	Criteria for variety choice ranked according to priority: 1) yield, 2) quality				
Mechanical weeding		No				
Mineral Fertilization	March- April	No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
Organic Fertilization		No				
Molluscicide			Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	control slugs		
Herbicide	February- April		1 1	control weeds		
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity	***		
	enc diversifying	dure crop protection	Page 12	6 of (f)		

			Soil cover at pesticide		
			application		
			Total number of treatment		
			operations		
Insecticide	April	Chemical pest control	TFI of insecticide	Pea and bean weevil	Field assessment, spraying according to
msecuciae	rpin	Chemical pest control	Total pesticide TFI	(Sitona lineatus)	need
			Pesticide mobility	control	need
			Pesticide eco-toxicity	Control	
			Soil cover at pesticide		
			application Total number of treatment		
	T . 3.6	Cl	operations	D 1'11 1 1	77: 11
	Late May,	Chemical pest control	TFI of insecticide	Bruchid beetle and	Field assessment, spraying according to
	early June		Total pesticide TFI	aphid control	need
			Pesticide mobility		
			Pesticide eco-toxicity		
			Soil cover at pesticide		
			application		
			Total number of treatment		
			operations		
Growth		No			
regulator					
Other		No			
chemical					
product					
Biological		No			
control					
product					
(elicitor,					
pheromone)					
Irrigation		No			
Harvest	Mid-	Harvest with straw chopping and	Fuel consumption at harvest		
	August	spreading.			
		Yield c. 5 t ha ⁻¹			
OPTIONAL	Introduction	n of spring crops to reduce pest pressu	re and foster diversity of natural	enemies.	
crop 4 in	Weeds: Ma	ximises possibilities for containment of	f grass weeds, particularly black	grass.	
rotation III		aking green bridge for cereal aphids, j		nip	
or crop 3 in		reaking green bridge, resistant variety			
rotation IV	Potential p	esticide reduction for this crop in relati	on to current practices: 37%		
SPRING					
Dec 10	000	AL INO		* * *	

BARLEY						
Pre drilling tillage	March- April	weed management and to create a seed-bed	Plough	helps control slugs	Bad for soil-inhabiting beneficials	
Drilling	March- April	Criteria for variety choice ranked according to priority: 1) yield, 2) malting quality, 3) leaf scald, 4) netblotch.	Additional seed cost of cultivar, yield reduction due to cultivar	Reduced disease level	Varieties not always available. The other factors may compromise disease resistance	
	Density: 350-400 pl. m ⁻²	Sowing density	Additional seed cost of cultivar, yield reduction due to cultivar		Lodging	
Mechanical weeding		No				
Mineral Fertilization	March- April	Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
	March- April	Total amount kg ha ⁻¹ : 100 N	Mineral N fertilizer applications. Total number of treatment operations			
Organic Fertilization		No				
Molluscicide			Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	February- April	Pre-tillage or pre-emergence chemical weed control (glyphosate)		control weeds		
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI	leaf scald (Rhynchosporium	Increased TFI, risk of resistance	Field assessment should determine need. The TFI reduction potential associated

			Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	secalis), net-blotch, mildew.		with field assessment has already been realised as the optimised timing and dose is already in practice.
Insecticide	May-June		TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	1	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	Control of aphids according to field assessments and threshold.
Growth		No				
regulator Other		No				
chemical product		110				
Biological control product (elicitor, pheromone)		No				
Irrigation		No				
Harvest	Mid- August	spreading. Yield 5.1 t ha ⁻¹	Fuel consumption at harvest			
OPTIONAL crop 4 in rotation III or crop 3 in rotation IV SPRING WHEAT	Weeds: Mai Insects: bre Diseases: br	n of spring crops to reduce pest pressur ximises possibilities for containment of aking green bridge for cereal aphids, p reaking green bridge, resistant variety esticide reduction for this crop in relation	grass weeds, particularly black esticide targeting and stewardsh	grass.		
Pre drilling tillage	March- April	Plough cultivation if necessary for weed management and to create a seed-bed	Plough		Bad for soil-inhabiting beneficials	
Drilling	March- April	Criteria for variety choice ranked	Additional seed cost of cultivar, yield reduction due to		Varieties not always available. The other factors may	

		making quality, 2) yield, 3) take-all, 4) rust, 5) orange wheat blossom midge.	cultivar	Minimise midge damage.	compromise disease resistance	
	Density: 350-400 pl. m ⁻²		Additional seed cost of cultivar, yield reduction due to cultivar	Improved crop competiveness against weeds	Lodging	
Mechanical weeding		No				
Mineral Fertilization	March- April	No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
	March- April	No of operations: 1 Total amount kg ha ⁻¹ : 140 N	Mineral N fertilizer applications. Total number of treatment operations			
Organic Fertilization		No				
Molluscicide		If necessary (unlikely)	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations			
Herbicide	February- April	Pre-tillage or pre-emergence chemical weed control (glyphosate)		control weeds		
Fungicide	May-June	Chemical disease control	TFI of fungicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity	Septoria, rust, mildew.	Increased TFI, risk of resistance	Field assessment should determine need. The TFI reduction potential associated with field assessment has already been realised as the optimised timing and dose is

			Soil cover at pesticide application			already in practice.
			Total number of treatment operations			
Insecticide	May-June	Chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Control of aphids.	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	Resistant varieties against orange wheat blossom midge Control of aphids according to field assessments and threshold.
Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor,		No				
pheromone) Irrigation		No				
Harvest	Mid- August	Harvest with straw chopping and spreading. Yield c. 5.5 t ha ⁻¹	Fuel consumption at harvest			
OPTIONAL crop 4 in rotation III, crop 3 in rotation IV: FALLOW	Pests: break Diseases: b Nutrition: a	ximises possibilities for containment of sing green bridge for cereal aphids reaking green bridge pplication of micro-nutrients using sevesticide reduction in relation to current	wage sludge or chicken manure practices: 15%	c grass		
Herbicide	March/ April and June/July	Chemical weed control	TFI of herbicide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Weed control, especially against grass weeds		

Cultivation	May	Inversion cultivation if grass weeds are a problem		Weed control, especially against grass weeds		
CROP 5 in rotation III and Crop 4 in rotation IV: WINTER OILSEED RAPE	Diseases: ch Insects: Min Reduced he	imm/spring herbicide necessary, possibnemical control, resistant varieties, somnimising tillage before and after OSR, vrbicide TFI sticide reduction for this crop in relation	e DSS information available vide-rows (~50 cm), pesticide ta	rgeting and stewardshi	p, trap cropping	
Drilling	mid- August	Criteria for variety choice ranked according to priority: 1) yield, 2) Disease resistance rating (Phoma, Light leaf spot), 3) seed price	Additional seed cost of cultivar, yield reduction due to cultivar		Good information on disease resistance from CEL recommended lists	
	mid- August	subsoiler tines to enable mechanical weeding, targeted pesticides and nutrient placement	Minimum tillage between crops			
	mid- August	Density: 25 - 50 plants m ⁻¹	Sowing density			
	mid-	Insecticide and fungicide seed dressing		Control flea beetles for 6 weeks		Reduced need for autumn insecticide spray
Inter-row weed management	September	Inter-row weed management (mechanical weeding where herbicide resistance is a problem, or targeted herbicide using band- spraying)		Weed control in general. May reduce slug incidence	Availability of machinery, low capacity, weather dependency. Insufficient effect against high levels of volunteers and grass weeds in the rows	
Mineral Fertilization		No of operations: 1 Maintenance dressings in accordance with soil type.	Mineral P/K/S fertilizers applications Total number of treatment operations			
	Mid- September / Mid- March	No of operations: 1-2 Total amount kg ha ⁻¹ : 180 N	Mineral N fertilizer applications Total number of treatment operations			
Organic	ODC		Organic N fertilizer	· · · · · · · · · · · · · · · · · · ·		

Fertilization			applications Total number of			
			treatment operations			
Molluscicide	September-	If necessary.	Total pesticide TFI			Depends on levels in field, assessed by
	October		Pesticide mobility			scouting. Often requires more than one
			Pesticide eco-toxicity			treatment
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Herbicide	Pre-	Chemical weed control	TFI of herbicide	Grass weeds,	Increased TFI	Field assessment determines the need.
	emergence		Total pesticide TFI	mayweed, cleavers	Risk of resistance	
	(August-		Pesticide mobility			
	September)		Pesticide eco-toxicity			
	,		Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
	Spring	Chemical weed control		Grass weed control		
				according to need		
Fungicide	October -	Chemical phoma control (against	TFI of fungicide	Phoma, Light leaf	Increased TFI, risk of	
	December	Phoma lingam in south of UK,	Total pesticide TFI	spot	resistance	
		Pyrenopeziza brassicae in north of	Pesticide mobility			
		UK), 1-2 treatments	Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
	April -	Chemical disease control	TFI of fungicide	Sclerotinia stem rot	Increased TFI, risk of	Simple forecast system now available,
	May		Total pesticide TFI	(Sclerotinia	resistance	reductions can be made during non-
			Pesticide mobility	sclerotium)		epidemic years (20 – 50% reduction)
			Pesticide eco-toxicity			
			Soil cover at pesticide			
			application			
			Total number of treatment			
			operations			
Insecticide	September	Possible chemical pest control	TFI of insecticide	Adult cabbage stem	Increased TFI, risk of non-	According to threshold (September to
	-	_	Total pesticide TFI	flea beetle	target effects on beneficial	October: leaf damage or adults in water
	December		Pesticide mobility	(Psylliodes	insects, risk of resistance	traps; November to December: larvae in
			Pesticide eco-toxicity	chrysocepthala)		plants)
			Soil cover at pesticide			
		NI IKO	•	, , ,		•

	April (green to yellow bud stage)	Possible chemical pest control To trap crop only	application Total number of treatment operations TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Pollen beetle (Meligethes aeneus)	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance	Only if field threshold surpassed If trap crop is 10% of crop area, insecticide use is reduced by 90%
	May	Possible chemical pest control	TFI of insecticide Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide	Cabbage seed weevil, (Ceutorhynchus assimilis) & Brassica pod midge (Dasineura brassicae)	Increased TFI, risk of non- target effects on beneficial insects, risk of resistance especially in pollen beetles	Only if field threshold surpassed
Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor, pheromone)		No	Total number of treatment operations			
Irrigation		No	Irrigation			
Harvest		Harvest with straw chopping and spreading. GPS controlled combine Expected yield: 3.4 t ha ⁻¹	Fuel consumption at harvest			Fuel savings

France AS systems

Principles: principles of the AS/IS are proposed regarding the main pest risk identified in the current system

Pest	Scale	Main crop protection strategies, main principles	Aim Impact on pests (weeds, diseases, insect pests)	Others impacts disadvantages & advantages
WEEDS	Cropping system	Diversifying sowing periods by introducing spring crops and shifting sowing dates (early/late sowing dates)	Non-specialized weed flora: to reduce autumn weed seedbank To allow false seedbed between harvest and drilling (late sowing or spring crops)	 ⊗Risk to increase spring weeds seedbank ⊗Energy and time cost (false seedbed) ©Positive impact on diseases (sowing dates) ©Work organisation may be improved
		Systematic intermediate catch crop when spring crops	Competitiveness against Autumn weeds	Decrease NO3 leaching when spring cropsLess nitrogen application to next crop
		Superficial tillage in and between crops/deep tillage when necessary	To reduce weeds	⊗Energy and time cost⊚Soil biodiversity (less deep tillage)
	Crop: WOSR	Double row spacing	To allow mechanical weeding	©Energy and time cost (mechanical weeding)
	Crop: winter wheat	Diversifying sowing periods: late sowing date (only one wheat of the crop sequence because of organisation problem)	False seedbed To reduce autumn weeds seedbank	 ③Also efficient to decrease susceptibility to diseases, slugs and aphids causing BYD (no autumn insecticide against aphids, less fungicide) ⑤Energy and time cost ⑥Risk of lower yield ⑥Risk of unsuitable sowing conditions
	Crop: spring barley	Diversifying sowing periods: late sowing date	False seedbed To reduce autumn weeds seedbank	©Also efficient to decrease susceptibility to diseases, slugs and aphids causing BYD (no autumn insecticide against aphids, less fungicide) ⊗Energy and time cost ⊗Risk of lower yield ⊗Risk of unsuitable sowing conditions
INSECTS PESTS	Crop: WOSR	Mixture with 10% early cultivars	To limit pollen beetles (trapped by early cultivar)	oranic or answered sowing conditions
	Crop: Winter wheat	Late sowing date (only one wheat of the crop sequence because of organisation problem)	To reduce insects in Autumn	 ②Also efficient to decrease susceptibility to diseases, slugs ③Risk of lower yield ③Risk of unsuitable sowing conditions
		Autumn insecticides against aphids if problems (1/5 year for late sowing, 4/5 for usual sowing date)	To limit aphids and yellow dwarf	
DISEASE	Cropping system	Diversifying crops in the rotation	Increase duration between the same crop	⊕Lower frequency of cash crops
4	endur	Use of resistant cultivars against disease with various earliness, cultivar mixture	05 of 0	⊗Resistant cultivars sometimes less productive⊗Delivery constraints with cultivar mixture

SLUGS	Crops	Chop and burry straws	To destroy slug eggs	©Increase of soil organic matter
				⊗Energy and time cost

AS prototype LANDSCAPE MANAGEMENT PRACTICES

None

CROP MANAGEMENT PRACTICES

Crop management	Period (decade)	Practice and description	DEXiPM inputs (described in detail in the attached table)	Effect on pests (weeds, diseases, insect pests)	Observations / disadvantages	Pesticide reduction
CROP SEQUENCE		Winter oilseed rape-winter wheat- winter barley-(intermediate legumes)- sunflower-winter wheat	Nb of crops, proportion of summer crops, of late-harvest crops, crop type (winter, spring, summer, perennial), crop effect on pollinators, soil cover			
Pre-drilling tillage	Early august (just after harvest of preceding crop)	Stubble breaking (cover crop) + rolling (roulage) Nb of operations: 2	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
	End of august	Stale seedbed (vibro) Nb of operations: 1	Superficial tillage between crops	Destruction of seedling: less favourable to slugs	⊗Energy and time cost ⊗Risk of Nitrate leaching	Reduction of herbicide Less molluscicide (on margin)
		Deep tillage: no	Deep tillage	Preserve soil natural enemies		
		Inversion tillage: no	Tillage type (inversion)	Preserve soil natural enemies		
CROP 1: winter oilseed rape	Diseases : resistant	v spacing to allow mechanical weeding cultivars (against phoma), chemical control y cultivars (10%, mixture) to trap pollen bee		s		
Drilling	Early September	Cultivar: resistant against phoma, earliness: cultivar mixture with 10% early cultivars Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar	10% early cultivars to trap pollen beetles	⊗Yield loss risk due to cultivar	No insecticide against pollen beetle
		Combined tool (Seeder+superficial tool) + roll Nb of operations: 2 (count 3 in DEXiPM because of combined tool)	Superficial tillage between crops			
		Density: 40 pl /m ² (row spacing 45cm)	Sowing density		Wide row spacing for mechanical weeding	Reduction of herbicide (mechanical weeding because large row spacing)
Mechanical weeding	Autumn	2 hoeing (binage) Nb of operations: 2	Superficial tillage in crops	Decrease autumn weeds	⊗Energy and time cost	Reduction of herbicide
	Spring	1 hoeing (<i>binage</i>) Nb of operations: 1	Superficial tillage in crops	Decrease autumn weeds	⊗Energy and time cost	Reduction of herbicide
en diversifying	ng crop protection	•	Page 137 of	,		

Mineral Fertilization	August Beginning of February Beginning of march Beginning of march	Nb of operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 100 P, 150 K Nb of operations: 1 Total amount (in kg/ha): 70N Nb operations: 1 75S Nb operations: 1 Total amount (in kg/ha): 80N	Mineral P/K fertilizers applications Total number of treatment operations Mineral N fertilizer applications Total number of treatment operations Total number of treatment operations Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide	End of August (emergence)	Metaldehyde (field margin) TFI 0.3	TFI of herbicide/fungicides/insecticides	Stubble breaking efficient against slugs		Reduction of molluscicide
Herbicide	Early September (post-sowing)	Novall (TFI 0.33, on row) + kerb (TFI 0.33, on row) Total TFI 0.66	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide	Against mono and dicotyledonous	Mechanical weeding (no treatment between rows)	Reduction of herbicide (mechanical weeding)
Fungicide	Spring	Against sclerotinia (TFI 0.75)	application Total number of treatment operations	Against sclerotinia	Resistant cultivar (no treatment against phoma)	
Insecticide	Spring	Insecticide against stem weevils TFI 1 Insecticide (1/2 year) against cabbage stem flee beetles (<i>Altises</i>) TFI 0,5 Insecticide against pod weevils and/or aphids TFI 1		against stem weevils, cabbage stem flee beetles, pod weevils, aphids	No treatment against pollen beetles (cultivar mixture)	Reduction of insecticide
Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor, pheromone)		No	Total number of treatment operations			
Irrigation		No	Irrigation			
Harvest	Beginning of	Operation: classic (no additional cost)	Fuel consumption at harvest			

	July	Expected yield: 27 qx/ha (range: 25-34)				
POST-HARVEST MANAGEMENT/	Beginning July (after harvest)	Stubble breaking (cover crop) Nb of operations: 1	Superficial tillage between crops	Enhance emergence of volunteers	©Less risk of nitrate leaching	
pre drilling tillage	Mid- September	Stale seedbed (cover crop and vibro) Nb of operations : 2	Superficial tillage between crops	Destruction of seedling (weeds and volunteers): less favourable to slugs	⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide No molluscicide
Intermediate crop		No (but WOSR volunteers favoured)				
CROP 2: winter wheat						
Drilling	Mid-Octobre	Cultivar: cultivar mixture (resistant against septoria) Non-treated seeds Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Additional seed cost of cultivar, yield reduction due to cultivar Superficial tillage between crops	Resistance against septoria	®Yield loss risk due to cultivar	Reduction of fungicide
		Density: 300 pl /m ²	Sowing density			
Mechanical weeding	Autumn	2 harrowing (herse etrille) Nb of operations: 2	Superficial tillage in crops		⊗Energy and time cost⊗Risk of nonsuitable weather conditions	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 80N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No growth regulator Less fungicide
	Mid April	Nb of operations: 1 Total amount: 50N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No growth regulator Less fungicide
Organic Fertilization		No P-K (see WOSR) No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of			
Herbicide	Beginning of March	Allié TFI 0.75	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility	Against mono and dicotyledonous	Mechanical weeding (less treatment)	Reduction of herbicide
Fungicide	April	Fungicide against foliar disease TFI 1	Pesticide eco-toxicity Soil cover at pesticide		Cultivar, low N fertilization	Reduction of fungicide

Insecticide	Autumn	Insecticide against aphids (3/5 year) TFI 0.6	application Total number of treatment			
	Spring	Insecticide against aphids (1/5 year) TFI 0.2	operations			
Growth regulator		No			Low N fertilization, low sowing density	No regulator
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		No	Irrigation			
Harvest	Mid July	Operation: classic (no additional cost) Expected yield: 65q/ha (range 50-69)	Fuel consumption at harvest			
		Straws buried	Stubble management	Avoid slugs	©Soil organic matter	Less molluscicide
POST-HARVEST MANAGEMENT/	July (at harvest of wheat)	Stubble breaking (covercrop)+rolling Nb of operations: 2	Superficial tillage between crops			
pre drilling tillage	From August to November	Stale seedbed (vibro) Nb of operations : 2	Superficial tillage between crops	Decrease autumn weeds seedbank and slug eggs	⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide and molluscicide
Intermediate crop		No				
CROP 3: winter	Weeds: late sowin	g to allow false seedbed mechanical weedir	ng, herbicide			
barley	Diseases : low N fee Lodging : low N fee	ertilization, resistant cultivar, low density, la ertilization	ate sowing			
Drilling	Beginning of November	Cultivar: resistant against leaf stripe, dwarf leaf rust (<i>puccinia</i>) Treated seeds against yellow dwarf virus	Additional seed cost of cultivar, yield reduction due to cultivar	Limit diseases and limit risk of aphids	⊗Yield loss risk due to cultivar and late sowing	Reduction of fungicides
		Combined tool (seeder+superficial tool) Nb of operation: 1(count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing limit risk of aphids and diseases		
		Density: 250 pl /m ²	Sowing density	Limit diseases	©Limit lodging	Reduction of fungicide and no growth regulator
Mechanical weeding	Beginning of March	1 harrowing (herse etrille)	Superficial tillage in crops	Limit weeds	⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	End of February	Nb of operations: 1	Mineral N fertilizer applications	Low N fertilization to	©Low N	No growth regulator
		Total amount: 70N	Total number of treatment	limit disease risk	fertilization to	
diversifyi	ng crop protection	F	Page 140 of			

			operations		limit lodging risk	
	End of March	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N fertilization to limit disease risk	©Low N fertilization to limit lodging risk	No growth regulator
Organic Fertilization		No				
Molluscicide		No	TFI of			
Herbicide	end of march	Bofix (against dicotyledonous, TFI 0.5)+herbicide against wild oat (TFI 0.5) TFI 1	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility Pesticide eco-toxicity			
Fungicide	Spring	Against aerial diseases TFI 0.75	Soil cover at pesticide application Total number of treatment operations		Cultivar, low N fertilization, sowing date, density	
Insecticide		No (seed treatment)			Sowing date, seed treatment	
Growth regulator		No			Low N fertilization, low density	
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		No				
Harvest	Mid-July	Operation: classic (no additional cost) Yield 65 q/ha (range 50-70)	Fuel consumption at harvest			
POST-HARVEST MANAGEMENT/	Mid-July (at harvest)	Stubble breaking (covercrop)+rolling Nb of operations: 2	Superficial tillage between crops			
pre drilling tillage	August	Stale seedbed (lemken) Nb of operations: 1	Superficial tillage between crops		⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide
Intermediate crop	Mid August	Catch crop (mixture of legumes, resistant to frost)	Number of crops	Effect on weeds (competitiveness)	©Nitrogen application for next crop, positive effect on soil structure, decrease of leaching risk	

					during winter period	
_	Mid-February	Chopping (broyage) or rolling	Superficial tillage between crops			
	Mid-February	Deep tillage (inversion) + superficial	Deep tillage, inversion tillage,		⊗Energy and	
CD OD 4	XX7 1 1 1 1	tillage (vibro)	Superficial tillage between crops		time cost	
CROP 4: sunflower	Weeds: mechanic Diseases: resistan					
Drilling	Mid-April	Cultivar: multi-resistant	Additional seed cost of cultivar,		⊗Yield loss risk	
8	. 1	Non-treated seeds	vield reduction due to cultivar		due to cultivar	
		Combined tool (seeder+superficial tool)	Superficial tillage between crops			
		Nb of operations: 1 (count 2 in	a ap control congression of a			
		DEXiPM because of combined tool)				
		Density: 7 pl /m ²	Sowing density			
Mechanical weeding	May-June	3 hoeing (binage)	Superficial tillage in crops		⊗Energy and	No herbicide between
	,	Nb of operations: 3			time cost	rows
Mineral Fertilization	End of April	Nb of operations : 1	Mineral P/K fertilizer		Restitution of N	
		Total amount: 100P, 100K	applications		by intermediate	
		, , , , , , , , , , , , , , , , , , , ,	Total number of treatment		catch crop	
			operations		cauch crop	
Organic Fertilization		No	1			
Molluscicide		No	TFI of			
Herbicide		Novall on row (Ammi majus)	herbicide/fungicides/insecticides			
		TFI 0.33	Total pesticide TFI			
Fungicide		No	Pesticide mobility		Resistant cultivar	
Insecticide		No	Pesticide eco-toxicity			
Growth regulator		No on sunflower	Soil cover at pesticide			
Other chemical		No	application			
product			Total number of treatment operations			
Biological control		No	operations			
product (elicitor,						
pheromone)						
Irrigation		No				
Harvest	End September	Operation: classic (no additional cost) Expected yield 23q/ha (range: 15-23)	Fuel consumption at harvest			
POST-HARVEST	End of	Chopping (broyage)	Superficial tillage between crops	Limit weeds,		Reduction of herbicide
MANAGEMENT/	September	Nb of operations: 1		destruction of		Less molluscicide
pre drilling tillage				seedlings (slugs)		
	End of	Stubble cultivation (covercrop)	Superficial tillage between crops	Limit weeds,		Reduction of herbicide
	September	+rolling		destruction of		Less molluscicide

		Nb of operations: 2		seedlings (slugs)		
	Mid-October	False seedbed (vibro)+rolling Nb of operations: 2	Superficial tillage between crops	Limit weeds, destruction of seedlings (slugs)		Reduction of herbicide Less molluscicide
CROP 5: winter		g (false seedbed), mechanical weeding, spri				
wheat	Insects : late sowir	ing, resistant hardy cultivars, low N fertilizang (autumn aphids), insecticides 1/5 year ing, low N fertilization, low density	ation, low density			
Drilling	Early November	Cultivar: hardy	Additional seed cost of cultivar,		⊗Yield loss risk	No fungicide
		Non-treated seeds	yield reduction due to cultivar		due to cultivar and late sowing	-
		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing: disease susceptibility and allow more false seedbed		Reduction of herbicide
		Density: 250 pl /m ²	Sowing density			
Mechanical weeding	Mid-february	1 harrowing (<i>herse etrille</i>) (1/2 year) Nb of operations: 1/2	Superficial tillage in crops	Limit weeds	⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 80N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No growth regulator Less fungicide
	Mid April	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No growth regulator Less fungicide
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of		Late sowing	
Herbicide	May	Against dicot and monocotyledonous TFI 0.75 Nb of operations: 1	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility			Reduction of herbicide
Fungicide	April	Fungicide against foliar disease TFI 0.5 Nb of operations: 1	Pesticide eco-toxicity Soil cover at pesticide application		Cultivar, low N fertilization, low sowing density	Reduction of fungicide
Insecticide	Spring	Insecticide against aphids (1/5 year) TFI 0.2 Nb of operations: 1	Total number of treatment operations			
Growth regulator	dura	No	,***, /A		Late sowing, low	

Page 143 of

					N fertilization, low sowing density	
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		no				
Harvest	Mid-July	Operation: classic (no additional cost) Expected yield 60q (range 50-65)	Fuel consumption at harvest		Late sowing: lower expected yield than first wheat	
		Straws chopped and buried	Stubble management	Avoid slugs		Less molluscicide
POST-HARVEST MANAGEMENT/ pre drilling tillage	Early august (just after harvest)	Stubble breaking (cover crop) + rolling (roulage) Nb of operations: 2	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
	End of august	Stale seedbed (vibro) Nb of operations: 1	Superficial tillage between crops	Destruction of seedling: less favourable to slugs	⊗Energy and time cost ⊗Risk of Nitrate leaching	Reduction of herbicide No molluscicide

France Innovative system

Principles: principles of the AS/IS are proposed regarding the main pest risk identified in the current system

Pest	Scale	Main crop protection strategies, main principles	Aim Impact on pests (weeds, diseases, insect pests)	Others impacts disadvantages & advantages
WEEDS	Cropping system	Extending and diversifying crop rotation (competitive crop)	To increase competitiveness against spring weeds	
		Diversifying sowing periods by shifting sowing dates (early/late sowing dates)		©Energy and time cost (false seedbed) ©Positive impact on diseases (sowing dates) ©Risk of yield loss
		False seedbed (except when mustard)	To reduce weeds	⊕Energy and time cost
		Systematic intermediate catch crop when spring crops	Competitiveness against Autumn weeds	©Decrease NO3 leaching when spring crops ©Reduce nitrogen application to next crop ®Risk to increase slugs depending on the catch crop used
		Odd number of deep tillage between two successive cereals	To reduce weeds	©Positive impact to decrease eyespot of wheat
	Crop: WOSR	Diversifying sowing periods: early sowing date	To increase competition against weeds	©Also efficient to decrease susceptibility to phoma, slugs and autumn insects (<i>e.g.</i> weevils): less fungicide and insecticide ®Might be lodging problems as no growth regulator
	Crop: winter wheat	Diversifying sowing periods: late sowing date	False seedbed To reduce autumn weeds seedbank	 ②Also efficient to decrease susceptibility to diseases, slugs and aphids causing BYD (no autumn insecticide against aphids, less fungicide) ③Energy and time cost ③Risk of lower yield ④Risk of unsuitable sowing conditions
	Crop: sugarbeet	Mechanical weeding, herbicide on row	To reduce weeds	⊕Energy and time cost
INSECTS PESTS	Crop: WOSR	Mixture with 10% early cultivars	To limit pollen beetles (trapped) Reduce TFI	⊗Risk of lower yield
	Crop: Winter wheat	Late sowing date	To reduce Autumn treatment	⊗Risk of lower yield⊚Reduce disease and lodging
		Insecticides against aphids if problems (1/5 year for late sowing)	To limit aphids and BYD	
DISEASE	Cropping system	Use of resistant cultivars against disease with various earliness, cultivar mixture		⊗Resistant cultivars sometimes less productive⊗Delivery constraints with cultivar mixture
SLUGS	Crops	Chop and burry straws		©Increase of soil organic matter

IS prototype

LANDSCAPE MANAGEMENT PRACTICES

None

CROP MANAGEMENT PRACTICES

Crop management	Period (decade)	Practice and description	DEXiPM inputs (described in detail in the attached table)	Effect on pests (weeds, diseases, insect pests)	Observations / disadvantages	Pesticide reduction
CROP SEQUENCE		(Mustard)-Sugarbeet-winter wheat- (Mustard)-hemp-winter wheat- winter oilseed rape-winter wheat	Nb of crops, proportion of summer crops, of late-harvest crops, crop type (winter, spring, summer, perennial), crop effect on pollinators, soil cover			
Pre-drilling tillage	Early august (just after harvest of preceding crop)	Stubble breaking (cover crop) + rolling (roulage) Nb of operations: 2	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
Intermediate catch crop	Beginning of August	Mustard 12kg/ha				
		Broadcast sowing + harrowing + rolling Nb of operations: 3	Superficial tillage between crops			
	February	Mechanical breaking (if not killed by frost) Nb of operations: 1	Superficial tillage between crops		©Less risk of nitrate leaching	Reduction of herbicide (No glyphosate)
	End of February	Ploughing (Inversion tillage)	Deep tillage, Tillage type (inversion)	Reduce weeds	⊗Energy and time cost	Reduction of herbicide
CROP 1: sugarbeet		sation of flora and less problems with weed cultivars, low N fertilization	-	emp (competitiveness):		
Drilling	Beginning of march	Cultivar: resistant Treated seeds Combined tool (Seeder+superficial tool) + roll Nb of operations: 2 (count 3 in DEXiPM because of combined tool)	Additional seed cost of cultivar, yield reduction due to cultivar Superficial tillage between crops		⊗Yield loss risk due to cultivar	Reduce insecticide
		Density: 13 pl /m ²	Sowing density			
Mechanical weeding	Spring	1 hoeing (houe) Nb of operations: 1	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
	Spring	1 hoeing (binage) Nb of operations: 1	Superficial tillage in crops		©Energy and time cost	Reduction of herbicide
Mineral Fertilization	Beginning of March	Nb of operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 200	Mineral P/K fertilizers applications			
en	dure ng crop protection	*	Page 147 of	Į.	<u>.</u>	1

	Nb of operations: 1 Total amount (in kg/ha): 100N Vinasse on intermediate crop mustard Metaldehyde (1/10 year) TFI 0.1 Localised on row TFI 0.5 1 fungicide and one more if problems, 1/5 year TFI 1.2 No	operations Mineral N fertilizer applications Total number of treatment operations Organic N fertilizer applications Total number of treatment operations TFI of herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations	Against mono and dicotyledonous Against oïdium, granulariose, cercosporiose	Mechanical weeding (no treatment between rows) Resistant cultivar No treatment because of seed treatment	Reduction of molluscicide Reduction of fungicide No insecticide
rgence) of March	Metaldehyde (1/10 year) TFI 0.1 Localised on row TFI 0.5 1 fungicide and one more if problems, 1/5 year TFI 1.2 No	Organic N fertilizer applications Total number of treatment operations TFI of herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Against oïdium, granulariose,	weeding (no treatment between rows) Resistant cultivar No treatment because of seed	molluscicide Reduction of fungicide
rgence) of March	TFI 0.1 Localised on row TFI 0.5 1 fungicide and one more if problems, 1/5 year TFI 1.2 No	TFI of herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Against oïdium, granulariose,	weeding (no treatment between rows) Resistant cultivar No treatment because of seed	molluscicide Reduction of fungicide
ıg	TFI 0.5 1 fungicide and one more if problems, 1/5 year TFI 1.2 No	Total pesticide TFI Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Against oïdium, granulariose,	weeding (no treatment between rows) Resistant cultivar No treatment because of seed	<u> </u>
	1/5 year TFI 1.2 No	Total number of treatment	granulariose,	No treatment because of seed	<u> </u>
	No			because of seed	No insecticide
	No				
	No				
	No	Irrigation			
nning of ber	Operation: high fuel cost Expected yield: 95 t/ha (range 80-105)	Fuel consumption at harvest			
	No				
	no				
ases: late sowing cts: late sowing	g, resistant hardy cultivars, low N fertiliza (autumn aphids), insecticides 1/5 year				
November	Cultivar: hardy Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivat		⊗Yield loss risk due to cultivar	No insecticide Autumn Less fungicide
ds: ase ets gin	: late sowing es: late sowing : late sowing eg: late sowing late sowing lovember	no late sowing (false seedbed), mechanical weeding, spres: late sowing (autumn aphids), insecticides 1/5 year ug: late sowing late sowing Cultivar: hardy Non-treated seeds	Operation: high fuel cost Expected yield: 95 t/ha (range 80-105) No no late sowing (false seedbed), mechanical weeding, spring herbicide es: late sowing, resistant hardy cultivars, low N fertilization, lower density clate sowing (autumn aphids), insecticides 1/5 year eg: late sowing, low N fertilization, lower density late sowing Cultivar: hardy Non-treated seeds Additional seed cost of cultivar, yield reduction due to cultivar Page 148 of	ing of Operation: high fuel cost Expected yield: 95 t/ha (range 80-105) No no late sowing (false seedbed), mechanical weeding, spring herbicide es: late sowing, resistant hardy cultivars, low N fertilization, lower density late sowing (autumn aphids), insecticides 1/5 year eg: late sowing, low N fertilization, lower density late sowing Cultivar: hardy Non-treated seeds Page 148 of	Ing of Expected yield: 95 t/ha (range 80-105) No Ino Itate sowing (false seedbed), mechanical weeding, spring herbicide es: late sowing, resistant hardy cultivars, low N fertilization, lower density Itate sowing (autumn aphids), insecticides 1/5 year eg: late sowing, low N fertilization, lower density Itate sowing Cultivar: hardy Non-treated seeds Additional seed cost of cultivar, yield reduction due to cultivar Wield loss risk due to cultivar

					and late sowing	
		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing: disease susceptibility and allow more false seedbed		Reduction of herbicide
		Density: 250 pl /m ²	Sowing density			
Mechanical weeding	Beginning of March	1 harrowing (herse etrille) (1/2 year) Nb of operations: 1/2	Superficial tillage in crops		©Energy and time cost	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 90N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	
	Mid April	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of		Late sowing	
Herbicide	May	Against dicot and monocotyledonous TFI 1 Nb of operations: 1	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility			Reduction of herbicide
Fungicide	April	Fungicide against foliar disease TFI 0.5	Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment	Reduce foliar disease	Cultivar, low N fertilization, sowing date and density	Reduction of fungicide
Insecticide	Spring	Insecticide against aphids (1/5 year) TFI 0.2	operations	Reduce aphids		
Growth regulator		No			Late sowing, low N fertilization, low sowing density	
Other chemical product		No	-			
Biological control product (elicitor, pheromone)						
Irrigation		no				
Harvest	Mid-July	Operation: classic (no additional cost) Expected yield 80q (range 70-90)	Fuel consumption at harvest			
en	dure ng crop protection	Expected yield 80q (range 70-90)	Page 149 of			

		Straws chopped and burried	Stubble management	Avoid slugs	©Soil organic matter	
POST-HARVEST MANAGEMENT/ pre drilling tillage	Early august (just after harvest of preceding crop)	Stubble breaking (cover crop) + rolling (roulage) Nb of operations: 2	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
Intermediate catch crop	Beginning of August	Mustard 12kg/ha				
		Broadcast sowing + harrowing + rolling Nb of operations: 3	Superficial tillage between crops			
	February	Mechanical breaking (if not killed by frost) Nb of operations: 1	Superficial tillage between crops		©Low risk of nitrate leaching	Reduction of herbicide (No glyphosate)
	End of February	Ploughing (Inversion tillage)	Deep tillage, Tillage type (inversion)	Reduce weeds	⊗Energy and time cost	Reduction of herbicide
CROP 3: hemp	Weeds: competitive Diseases: no problem Insects: no problem	em of disease n				
Drilling	Beginning of May (on heated soil)	No specific cultivar	Additional seed cost of cultivar, yield reduction due to cultivar	Competitive crop limit weeds		No herbicide
		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool) Density: 300 pl /m²	Superficial tillage between crops			
M 1 1 1 1		y 1	Sowing density			
Mechanical weeding Mineral Fertilization	Mid May	No Nb of operations: 1	Superficial tillage in crops Mineral N fertilizer applications			
		Total amount: 100N	Total number of treatment operations			
	Mid May	Nb of operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 200 P, 300 K	Mineral P/K fertilizers applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	•			
Herbicide		No				
		No				
Fungicide						

Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		no	Irrigation			
Harvest	Beginning of September	Operation: harvest of grains, mowing, drying, press: high fuel cost Expected yield: 800q/ha (range 600-1000)	Fuel consumption at harvest			
		Straws buried	Stubble management	Avoid slugs	©Soil organic matter	Less molluscicide
POST-HARVEST MANAGEMENT/	Beginning of September	Stubble breaking (covercrop) Nb of operations: 1	Superficial tillage between crops			
pre drilling tillage	October	Stale seedbed (vibro) Nb of operations: 1-2	Superficial tillage between crops	Decrease autumn weeds seedbank	⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide
Intermediate crop CROP 4: winter		No ag (false seedbed), mechanical weeding, spr			6	
	Diseases: late sowing Lodging: late sowing Lodging L	- 1 -				
CROP 4: winter	Diseases: late sowing Lodging: late sowing Lodging L	ng (false seedbed), mechanical weeding, spring, resistant hardy cultivars, low N fertilizing (autumn aphids), insecticides 1/5 yearing, low N fertilization, lower density		Limit disease	⊗Yield loss risk due to cultivar and late sowing	Less fungicide
CROP 4: winter wheat	Diseases: late sowing Insects: late sowing Lodging: late sowing Slugs: late sowing	ing (false seedbed), mechanical weeding, spring, resistant hardy cultivars, low N fertilizing (autumn aphids), insecticides 1/5 yearing, low N fertilization, lower density, superficial tillage (eggs) Cultivar: hardy	Additional seed cost of cultivar,	Limit disease Late sowing: disease susceptibility, Avoid autumn insect and allow more false seedbed	⊗Yield loss risk due to cultivar	Less fungicide Reduction of herbicide and no autumn insecticide
CROP 4: winter wheat	Diseases: late sowing Insects: late sowing Lodging: late sowing Slugs: late sowing	g (false seedbed), mechanical weeding, spring, resistant hardy cultivars, low N fertilizing (autumn aphids), insecticides 1/5 yearing, low N fertilization, lower density superficial tillage (eggs) Cultivar: hardy Non-treated seeds Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in	Additional seed cost of cultivar, yield reduction due to cultivar	Late sowing: disease susceptibility, Avoid autumn insect and allow more false	⊗Yield loss risk due to cultivar	Reduction of herbicide and no autumn
CROP 4: winter wheat	Diseases: late sowing Insects: late sowing Lodging: late sowing Slugs: late sowing	ring, resistant hardy cultivars, low N fertilization (autumn aphids), insecticides 1/5 year ring, low N fertilization, lower density superficial tillage (eggs) Cultivar: hardy Non-treated seeds Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Additional seed cost of cultivar, yield reduction due to cultivar Superficial tillage between crops	Late sowing: disease susceptibility, Avoid autumn insect and allow more false seedbed	⊗Yield loss risk due to cultivar	Reduction of herbicide and no autumn

	Mid April	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of herbicide/fungicides/insecticides Total pesticide TFI		Late sowing, superficial tillage (eggs)	
Herbicide	May	Against dicot and monocotyledonous TFI 1 Nb of operations: 1	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide			Reduction of herbicide
Fungicide	April	Fungicide against foliar disease TFI 0.75	application Total number of treatment operations		Cultivar, low N fertilization, sowing density and date	Reduction of fungicide
Insecticide	Spring	Insecticide against aphids (1/5 year) TFI 0.2				
Growth regulator		No			Late sowing, low N fertilization, low sowing density	
Other chemical product		No			dunisty	
Biological control product (elicitor, pheromone)		No				
Irrigation		no				
Harvest	Mid-July	Operation: classic (no additional cost) Expected yield 75q (range 65-85)	Fuel consumption at harvest			
		Straws chopped and buried	Stubble management	Avoid slugs		No molluscicide
POST-HARVEST MANAGEMENT/ pre drilling tillage	End of July (just after harvest of preceding crop)	Stubble breaking (cover crop) + rolling (roulage) Nb of operations: 2	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
	End of July	Ploughing (Inversion tillage)	Deep tillage, Tillage type (inversion)	Reduce weeds	©Energy and time cost	Reduction of herbicide
CROP 5: winter oilseed rape	Diseases : early sov	ng, competitiveness wing, resistant cultivars our natural enemies, margin and early cultiv				

Drilling	Early august	Cultivar: resistant against phoma, earliness: cultivar mixture with 10% early cultivars Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar			No fungicide against phoma No insecticide against pollen beetle Reduction of herbicide,
		Combined tool (Seeder+superficial tool) + roll Nb of operations: 2 (count 3 in DEXiPM because of combined tool)	Superficial tillage between crops	Early sowing: more competitiveness with weeds, decrease diseases susceptibility (phoma), less susceptible to slugs and autumn insects		insecticide, molluscicide
		Density: 45 pl /m²	Sowing density	High density to increase competitiveness against weeds		
Mechanical weeding		No				
Mineral Fertilization	Early august	Nb of operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 100 P, 150 K	Mineral P/K fertilizers applications Total number of treatment operations			
	End of January	Nb of operations: 1 Total amount (in kg/ha): 70N	Mineral N fertilizer applications Total number of treatment operations			
	Beginning of march	Nb operations: 1 75S	Total number of treatment operations			
	Mid February	Nb operations: 1 Total amount (in kg/ha): 60N	Mineral N fertilizer applications Total number of treatment operations			
	End of March	Nb operations: 1 Total amount (in kg/ha): 80N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No				
Molluscicide	End of August (emergence)	Metaldehyde (1/5 year) TFI 0.2	TFI of herbicide/fungicides/insecticides Total pesticide TFI		Early sowing less favourable to slugs	Reduction of molluscicide
Herbicide	End of August (emergence) March	Systematic but reduced dose TFI 0.8 Herbicide 1/3 year	Pesticide mobility Pesticide eco-toxicity		Competitiveness Competitiveness	
	March	Herofetae 1/3 year	Soil cover at pesticide		Compentiveness	

		TFI 0.33	application			
Fungicide	April (flowering)	Against sclerotinia TFI 0.8	Total number of treatment operations		Resistant cultivar against phoma and early sowing	No fungicide against phoma
Insecticide Growth regulator	Spring	Karate zeon (weevils) TFI 2			Cultivar mixture: no treatment against pollen beetle No treatments against flea beetle (petite altise) and fly (mouche) because of early sowing	Reduction of insecticide
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		No	Irrigation			
Harvest	Beginning of July	Operation: classic (no additional cost) Expected yield: 38 qx/ha (range 30-40)	Fuel consumption at harvest			
POST-HARVEST MANAGEMENT/ pre drilling tillage	End of august	Stubble breaking (cover crop) Nb of operations: 1	Superficial tillage between crops	After the emergence of volunteers to avoid rape seedbank		Reduction of herbicide
	September- October	Stale seedbed (lemken) Nb of operations: 3	Superficial tillage between crops	Destruction of weeds Destruction of seedling: less favourable to slugs	⊗Energy and time cost ⊗Risk of Nitrate leaching	Reduction of herbicide No molluscicide
Intermediate crop		No				
CROP 6: winter wheat	Diseases: late sowing Lodging: late sowing Slugs: late sowing	g (false seedbed), mechanical weeding, spring, resistant hardy cultivars, low N fertilizate (autumn aphids), insecticides 1/5 yearing, low N fertilization, lower density	ation, lower density			
Drilling	Early November	Cultivar: hardy Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar Page 154 of		⊗Yield loss risk due to cultivar and late sowing	less fungicide

		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing: disease susceptibility and allow more false seedbed		Reduction of herbicide and no autumn insecticides, and molluscicide
		Density: 250 pl /m ²	Sowing density			
Mechanical weeding	Beginning of March	1 harrowing (<i>herse etrille</i>) (1/2 year) Nb of operations: 1/2	Superficial tillage in crops		©Energy and time cost	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 90N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	
	Mid April	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	◎Low Napplication:reduce lodge risk	
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of		Late sowing	No molluscicide
Herbicide	May	Against dicot and monocotyledonous TFI 1 Nb of operations: 1	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility			Reduction of herbicide
Fungicide	April	Fungicide against foliar disease TFI 0.75	Pesticide eco-toxicity Soil cover at pesticide		Cultivar, low N fertilization	Reduction of fungicide
Insecticide	Spring	Insecticide against aphids (1/5 year) TFI 0.2	application Total number of treatment			
Growth regulator		No	operations		Late sowing, low N fertilization, low sowing density	No regulator
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		no				
Harvest	Mid-July	Operation: classic (no additional cost) Expected yield 75q (range 65-85)	Fuel consumption at harvest			
		Straws chopped and buried	Stubble management	Avoid slugs		No molluscicide
POST-HARVEST MANAGEMENT/	End of July (just after harvest of	Stubble breaking (cover crop) + rolling (roulage)	Superficial tillage between crops	Favour emergence of cereals volunteers		Reduction of herbicide
diversifying	ng crop protection	F	Page 155 of			

pre drilling tillage	preceding crop)	Nb of operations: 2 (count 3 in DEXiPM because of combined tool)		and of some weeds		
Intermediate catch	Beginning of	Mustard				
crop	August	12kg/ha				
		Broadcast sowing + harrowing +	Superficial tillage between crops			
		rolling				
		Nb of operations: 3				
	February	Mechanical breaking (if not killed by	Superficial tillage between crops		©Less risk of	Reduction of herbicide
		frost)			nitrate leaching	(No glyphosate)
		Nb of operations: 1				
	End of February	Ploughing (Inversion tillage)	Deep tillage, Tillage type	Reduce weeds	⊗Energy and	Reduction of herbicide
			(inversion)		time cost	

Principles: principles of the AS/IS are proposed regarding the main pest risk identified in the current system

Pest	Scale	Main crop protection strategies, main principles	Aim Impact on pests (weeds, diseases, insect pests)	Others impacts disadvantages & advantages
WEEDS	Cropping system	Diversifying sowing periods by introducing spring crops and shifting sowing dates (early/late sowing dates	Non-specialized weed flora: reduce autumn weed seedbank To allow false seedbed between harvest and drilling (late sowing or spring crops)	 ⊗Risk to increase spring weeds seedbank ⊗Energy and time cost (false seedbed) ⊗Risk to increase NO3 leaching if bare soil (spring crops) ⊚Positive impact on diseases (sowing dates)
		Increase the frequency of crops with high competitiveness against weeds (Triticale) and perennial crops (alfalfa). Chose cultivar with high competitiveness	To reduce weed seedbank	⊕Delivery constraints for some crops
		Mechanical cultivation	To reduce TFI	⊗Energy and time cost
	Crop: WOSR	Diversifying sowing periods: early sowing date	To increase competition against weeds	 ②Also efficient to decrease susceptibility to phoma, slugs and autumn insects (e.g. weevils): less fungicide and insecticide ③Might be lodging problems as no growth regulator ③Efficient only if sufficient nitrate
	Crop: winter wheat	Diversifying sowing periods: late sowing date	False seedbed To reduce autumn weeds seedbank	 ②Also efficient to decrease susceptibility to diseases, slugs and aphids causing BYD (no autumn insecticide against aphids, less fungicide) ③Energy and time cost ④Risk of lower yield ④Risk of unsuitable sowing conditions
		Herbicides (foliar in spring) against grasses and/or against dicotyledonous if mechanical weeding is not sufficiently efficient	To limit weeds	
	Crop: spring barley	Herbicides (foliar) against grasses and/or against dicotyledonous if mechanical weeding is not efficient, particularly after sunflower	To limit weeds	
		Sown as soon as possible	Competition against spring weeds	⊗Efficient only if sufficient nitrate
	Crop: sunflower	Herbicides against grasses if mechanical weeding is not efficient	To limit grasses	
INSECTS PESTS	Landscape	Small fields (<10 ha), settlement of hedges or other non-productive areas	To favour natural enemies	⊗May impose to reorganise crop mosaic
		Flowering strips for pollinators (syrphae), refuges for ladybugs in winter	To favour natural enemies populations against aphids	
		Turnip rape (Brassica rapa) on WOSR margins	To attract pollen beetles	⊗Loss of productive area
	Cropping system		To favour soil natural enemies	

			populations (e.g. carabidae)	
	Crop: WOSR	Mixture with early cultivars	To limit pollen beetles (trapped)	
		Insecticides if problems with more harmful insects (mostly weevils)	To limit weevils	
	Crop: winter wheat	No Autumn insecticides against aphids (late sowing date Spring insecticide against aphids if problems (1/10 year)	To limit aphids and BYD	
DISEASE	Cropping system	Diversifying crops in the rotation	To increase duration between the same crop	⊗Lower frequency of cash crops
	Crops	Use of resistant cultivars against disease with various earliness, cultivar mixture Use of contans each year (biological control method) against sclerotinia		Sesistant cultivars sometimes less productive Delivery constraints with cultivar mixture Economical cost
SLUGS	Crops	Export straws		⊕Decrease of soil organic matter

IS prototype

LANDSCAPE MANAGEMENT PRACTICES

BITT (DOCTOR B TYTE T)				
Landscape	Period	Practice	DEXiPM inputs	Observations
management				
Field margin		Margin of rape field sown with turnip rape, breaking at flowering	Habitat management	Breaking at flowering to kill part of the
			_	pollen beetle
				Yield loss for WOSR (less area)
Non-productive area		Hedges, flowering strips	Habitat management	Increase natural enemies populations
Other landscape manage	ment that co	ould be mentioned, not in the present system		
Surrounding fields		Stubble management (stubble as source of inoculum for new fields, e.g. phoma	Pest pressure includes	
		stem canker), Species and cultivars choice and distribution at the landscape	cultivar distribution	
		scale (collective management of resistance durability, GM management), etc		

CROP MANAGEMENT PRACTICES

Crop management	Period (decade)	Practice and description	DEXiPM inputs (described in detail in the attached table)	Effect on pests (weeds, diseases, insect pests)	Observations / disadvantages	Pesticide reduction
CROP SEQUENCE		Winter oilseed rape-winter wheat- spring barley-alfalfa-alfalfa-winter wheat-(Mustard)-sunflower-triticale	Nb of crops, proportion of summer crops, of late-harvest crops, crop type (winter, spring, summer, perennial), crop effect on pollinators, soil cover			

Pre-drilling tillage	Early august (just after harvest of preceding crop)	Stubble breaking (cover crop) Nb of operations: 1	Superficial tillage between crops	Favour emergence of cereals volunteers and of some weeds		Reduction of herbicide
	Early august	Stale seedbed (lemken) Nb of operations: 1	Superficial tillage between crops	Destruction of seedling: less favourable to slugs	⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide No molluscicide
		Deep tillage: no	Deep tillage	Preserve soil natural enemies		
		Inversion tillage: no	Tillage type (inversion)	Preserve soil natural enemies		
CROP 1: winter oilseed rape	Diseases : early sov	ing and N application at sowing localised or wing, resistant cultivars, biological control our natural enemies, margin and early cultiv	(contans)		ng between rows	
Drilling	Early august	Cultivar: resistant against phoma, earliness: cultivar mixture with 10% early cultivars Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar	10% early cultivars to trap pollen beetles (in addition to turnip rape)	⊗Yield loss risk due to cultivar	No fungicide against phoma No insecticide against pollen beetle
		Combined tool (Seeder+superficial tool) + roll Nb of operations: 2 (count 3 in DEXiPM because of combined tool)	Superficial tillage between crops	Early sowing: favour competitiveness with weeds, limit diseases susceptibility (phoma), limit susceptibility to slugs and to some autumn insects		Reduction of herbicide, insecticide, molluscicide
		Density: 45 pl /m ² (row spacing 45cm)	Sowing density	Wide row spacing for mechanical weeding		
Mechanical weeding	Autumn	2 harrowing (herse etrille) + 2 hoeing (binage) Nb of operations: 4	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
	Spring	1 hoeing (binage) Nb of operations: 1	Superficial tillage in crops		⊕Energy and time cost	Reduction of herbicide
Mineral Fertilization	Early august	Nb of operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 100 P, 150 K, 100 N	Mineral P/K fertilizers applications Total number of treatment operations			
M	Early august	Nb of operations: 1 Total amount (in kg/ha): 100 N	Mineral N fertilizer applications Total number of treatment operations	N application localised on the row to enhance		

				competitiveness of WOSR against weeds		
	End of January	Nb of operations: 1 Total amount (in kg/ha): 70N	Mineral N fertilizer applications Total number of treatment operations			
	Beginning of march	Nb operations: 1 75S	Total number of treatment operations			
	Mid march	Nb operations: 1 Total amount (in kg/ha): 70N	Mineral N fertilizer applications Total number of treatment operations			
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide	End of August (emergence)	Metaldehyde 0.3kg (field margin) TFI 0.3	TFI of herbicide/fungicides/insecticides Total pesticide TFI		Early sowing less favourable to slugs	Reduction of molluscicide
Herbicide		No	Pesticide mobility Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment		Competitiveness on row and mechanical weeding between rows	No herbicide
Fungicide		No	operations		Resistant cultivar and early sowing (phoma), contans against sclerotinia	
Insecticide	Spring	Karate zeon (weevils) TFI 1,5 (between 1 and 2 depending on the pressure)		Threshold for treatment if field margin (turnip rape) or cultivar mixture (10% early cultivar) not efficient enough		Reduction of insecticide
Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor, pheromone)	Sowing	Contans: 1kg	Total number of treatment operations	Biological control against sclerotinia on WOSR and sunflower (each year)	⊗Economical cost	No fungicide
Irrigation	dura	No	Irrigation			

Harvest	Mid June	Operation: classic (no additional cost) Expected yield: 25 qx/ha	Fuel consumption at harvest			
POST-HARVEST MANAGEMENT/ pre drilling tillage	End of august	Stubble breaking (cover crop) Nb of operations: 1	Superficial tillage between crops	After the emergence of volunteers to avoid rape seedbank		Reduction of herbicide
	September- October	Stale seedbed (lemken) Nb of operations: 3	Superficial tillage between crops	Destruction of weeds Destruction of seedling: less favourable to slugs and destruction of slug egg	⊗Energy and time cost⊗Risk of Nitrate leaching	Reduction of herbicide No molluscicide
Intermediate crop		no				
CROP 2: winter wheat	Diseases: late sowing Lodging: late sowing Slugs: l	ng (false seedbed), mechanical weeding, spring, cultivar mixture with resistant cultivarsing (autumn aphids), bearded cultivars, naturing, low N fertilization, low density, superficial tillage	s, low N fertilization, low density al enemies favoured, insecticides if	necessary		
Drilling	Early November	Cultivar: cultivar mixture (bearded, resistant against aerial disease) Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar		⊗Yield loss risk due to cultivar and late sowing	No fungicide
		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing: disease susceptibility, allow more false seedbed, less autumn insects and slugs		Reduction of herbicide, insecticide No fungicide and molluscicide
		Density: 200 pl /m ²	Sowing density			
Mechanical weeding	Autumn	2 harrowing (herse etrille) Nb of operations: 2	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	◎Low N application: reduce lodge risk	No growth regulator and fungicide
	Mid April	Nb of operations: 1 Total amount: 50N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No growth regulator and fungicide
Organic Fertilization		No	Organic N fertilizer applications Total number of treatment operations			
Molluscicide		No	TFI of		Late sowing	
Herbicide	Beginning of March	Archipel (sulfonylurée) TFI 0.5 (1 out of 2 years)	herbicide/fungicides/insecticides Total pesticide TFI	If mechanical weeding is not		Reduction of herbicide

Page 161 of

			Pesticide mobility	efficient		
Fungicide		No	Pesticide eco-toxicity Soil cover at pesticide application Total number of treatment operations		Cultivar, late sowing date, low sowing density, low N fertilization	
Insecticide	May	Mavrick flo (aphids) TFI 0.1 (1 out of 10 years)		Extraordinary: only if 100% of ears have more than 5 aphids	Late sowing date	Reduction of insecticide No autumn insecticide against aphids/BYD
Growth regulator		No			Late sowing, low N fertilization, low sowing density	
Other chemical product		No				
Biological control product (elicitor, pheromone)	Sowing	Contans: 1kg	Total number of treatment operations	Biological control against sclerotinia on WOSR and sunflower (each year)	©Economical cost	No fungicide on WOSR and sunflower
Irrigation		no	Irrigation			
Harvest	Mid july	Operation: classic (no additional cost) Expected yield: 55q/ha	Fuel consumption at harvest			
		Straws exported	Stubble management	Avoid slugs	⊗Soil organic matter	No molluscicide
POST-HARVEST MANAGEMENT/	July (at harvest of wheat)	Stubble breaking (covercrop) Nb of operations: 1	Superficial tillage between crops			
pre drilling tillage	From August to November	Stale seedbed (lemken) Nb of operations: 4	Superficial tillage between crops	Decrease autumn weeds seedbank Destruction of slug eggs	⊕Energy and time cost⊕Risk of nitrate leaching	Reduction of herbicide, no molluscicide on next crop
Intermediate crop		No			⊗Risk of nitrate leaching	
CROP 3: spring barley			er, mechanical weeding, herbicide is	f necessary		
Drilling	February	Cultivar: cultivar resistant against aerial diseases Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar		⊗Yield loss risk due to cultivar Collecting firms	No fungicide
e diversif	ICUTE ying crop protection		Page 162 of			

					often impose the cultivar for technological quality	
		Combined tool (seeder+superficial tool) Nb of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Sowing as soon as possible: increase spring weed competitiveness Differentiate weed flora with sunflower	Sowing as soon as possible: limit risk of nitrate leaching	
		Density: 250 pl /m ²	Sowing density			
Mechanical weeding	Beginning of March	1 harrowing (<i>herse etrille</i>) Nb of operations: 1	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
	April	1 harrowing (herse etrille) Nb of operations: 1	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	February	Nb of operations: 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	No fungicide, no regulator
Organic Fertilization		No				
Molluscicide		No	TFI of			
Herbicide	end of march	Embutone (against dicotyledonous) TFI 0.5 (1 out of 2 years)	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility	If mechanical weeding is not efficient enough		Reduction of herbicide
Fungicide		No	Pesticide eco-toxicity Soil cover at pesticide		Cultivar, low N fertilization	
Insecticide		No	application			
Growth regulator		No	Total number of treatment operations		Low N fertilization	
Other chemical product		No				
Biological control product (elicitor, pheromone)	Sowing	Contans: 1kg	Total number of treatment operations	Biological control against sclerotinia on WOSR and sunflower (each year)	⊗Economical cost	No fungicide on WOSR and sunflower
Irrigation		no				
Harvest	End of July	Operation: classic (no additional cost) Expected yield 40 q/ha	Fuel consumption at harvest			
POST-HARVEST MANAGEMENT/	End of July	Stubble breaking (covercrop) Nb of operations: 1	Superficial tillage between crops			
pre drilling tillage	Δiguet	Stale seedbed (lemken)	Superficial tillage between crops		⊗Energy and	Reduction of herbicide

		Nb of operations : 2			time cost ⊕Risk of Nitrate leaching	
Intermediate crop		no				
CROP 4: alfalfa		e soil cover (early sowing, mowing not too f				
Drilling	End of August	Combined tool (seeder+superficial tool) Nb of operation: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops			
Mechanical weeding		No				
Mineral Fertilization	Beginning September	Nb operations: 1 Total amount (in P ₂ O ₅ /K ₂ O kg/ha): 300K, 100P	Mineral P/K fertilizer applications Total number of treatment operations			
Organic Fertilization		No				
Molluscicide		No				
Herbicide		No		Several mowing		
Fungicide		No				
Insecticide		No				
Growth regulator		No				
Other chemical product		No				
Biological control product (elicitor, pheromone)		No				
Irrigation		No				
Harvest	Beginning June, 15 July, end of August	Operations: 3 tools: mowing + windrowing (<i>andainage</i>) + press : high fuel cost Expected yield: 9t/year (4+3+2)	Fuel consumption at harvest	Early mowing to avoid alfalfa seedbank constitution	⊗Energy and time cost	
CROP 5: alfalfa				<u> </u>		
Mineral Fertilization	Autumn	Nb operations: 1 Total amount (in K ₂ O kg/ha): 200K	Mineral K fertilizer applications Total number of treatment operations			
Harvest	Beginning June, 15 July, end of August	Operations: 3 tools: mowing + windrowing (<i>andainage</i>) + press: high fuel cost Expected yield: 9t/year (4+3+2)	Fuel consumption at harvest		©Energy and time cost	
POST-HARVEST MANAGEMENT/	September	Mouldboard ploughing	Deep tillage, tillage type (inversion)			
pre drilling tillage	September	1 harrowing (herse rotative)	Superficial tillage between crops			Reduction of herbicide
	ng crop protection		Page 164 of	•		

		Nb of operations: 1				
	End October	Stale seedbed (lemken) Nb of operations: 1	Superficial tillage between crops		©Energy and time cost ⊕Risk of Nitrate leaching	Reduction of herbicide
Intermediate crop		no				
CROP 6: winter wheat	density) Diseases: late sowing Lodging: late sowing Slugs: late sowing		s, low N fertilization, low density al enemies favoured, insecticides if			
Drilling	Early November	Cultivar: cultivar mixture (bearded, resistant against aerial disease) Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar		⊗Yield loss risk due to cultivar and late sowing	No fungicide
		Combined tool (seeder+superficial tool) Number of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops	Late sowing: disease susceptibility and allow more false seedbed		Reduction of herbicide, no autumn insecticide
		Density: 250 pl /m ² (low row spacing)	Sowing density	Low row spacing: competitiveness		Reduction of herbicide
Mechanical weeding	Autumn	2 harrowing (<i>herse etrille</i>) Number of operations: 2	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	Mid March	Nb of operations: 1 Total amount: 60N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk. Less than in the previous wheat because of alfalfa effect	
	Mid April	Nb of operations: 1 Total amount: 50N	Mineral N fertilizer applications Total number of treatment operations	Low N application: reduce disease risk	©Low N application: reduce lodge risk	
Organic Fertilization		No			Ŭ	
Molluscicide		No	TFI of		Late sowing	
Herbicide	May	Archipel (sulfonylurée) TFI 0.25 (1/4 year) Nb of operations: 1	herbicide/fungicides/insecticides Total pesticide TFI Pesticide mobility Pesticide eco-toxicity	If mechanical weeding is not efficient.	Less frequent in comparison with the previous wheat because of	Reduction of herbicide

Page 165 of

			Soil cover at pesticide application Total number of treatment operations		alfalfa effect and low row spacing (competitiveness) and mechanical weeding	
Fungicide		No			Cultivar, late sowing date, low sowing density, low N fertilization	No fungicide
Insecticide	May	Mavrick flo (aphids) TFI 0.1 (1 out of 10 years)		Extraordinary: only if 100% of ears have more than 5 aphids	Late sowing date	Reduction of insecticide No autumn insecticides against aphids/BYD
Growth regulator		No			Late sowing, low N fertilization, low sowing density	No growth regulator
Other chemical product		No				
Biological control product (elicitor, pheromone)		Contans: 1kg	Total number of treatment operations	Biological control against sclerotinia on WOSR and sunflower (each year)	⊗Economical cost	No fungicide on WOSR and sunflower
Irrigation		no				
Harvest	Mid July	Operation: classic (no additional cost) Expected yield 55q	Fuel consumption at harvest		©Higher expected yield because of alfalfa effect (soil structure)	
		Straws exported	Stubble management	Avoid slugs	Soil organic content	No molluscicide
POST-HARVEST MANAGEMENT/	Mid July	Stubble breaking	Superficial tillage between crops			
pre drilling tillage	End of July	False seedbed (lemken) Nb of operation: 1	Superficial tillage between crops		©Energy and time cost	
Intermediate catch crop	Beginning of August	Mustard 12kg/ha Broadcast sowing + harrowing + rolling Number of operations: 3	Superficial tillage between crops		©Lower risk of nitrate leaching	

	November	Mechanical breaking	Superficial tillage between crops			Reduction of herbicide (No glyphosate)
CROP 7: sunflower	Weeds: mechanic					
		t cultivar, biological control against scleroting	nia (contans)			
		atural enemies against aphids				
Drilling	End of April	Cultivar: early cultivar, multi-resistant	Additional seed cost of cultivar,			No fungicide
		Non-treated seeds	yield reduction due to cultivar			
		Combined tool (seeder+superficial tool)	Superficial tillage between crops			
		Number of operations: 1 (count 2 in				
		DEXiPM because of combined tool)				
		Density: 7 pl /m ²	Sowing density			
Mechanical weeding	May-June	2 hoeing (binage)	Superficial tillage in crops		⊗Energy and	No herbicide
		Number of operations: 2			time cost	
Mineral Fertilization	End of April	Nb of operations: 1	Mineral P/K fertilizer		⊚No N because	
		Total amount: 100P, 150K	applications		of restitution by	
			Total number of treatment		intermediate	
			operations		catch crop	
Organic Fertilization		No				
Molluscicide		No				
Herbicide		No				
Fungicide		No			Resistant cultivar	
Insecticide		No				
Growth regulator		No on sunflower				
Other chemical		No				
product						
Biological control		Contans: 1kg	Total number of treatment	Biological control	⊗Economical	No fungicide
product (elicitor,			operations	against sclerotinia on	cost	
pheromone)				WOSR and		
				sunflower (each year)		
Irrigation		No				
Harvest	End September	Operation: classic (no additional cost) Expected yield 25q/ha	Fuel consumption at harvest			
POST-HARVEST	End of	Stubble breaking (covercrop)	Superficial tillage between crops	Limit weeds,		Reduction of herbicide
MANAGEMENT/	September	Nb of operations: 1		destruction of		No molluscicide
pre drilling tillage				seedlings (slugs)		
	Beginning	False seedbed (lemken)	Superficial tillage between crops	Limit weeds,	⊗Energy and	Reduction of herbicide
	October	Nb of operations: 1		destruction of	time cost	No molluscicide
				seedlings (slugs)		
CROP 8: triticale		lbed, late sowing, high sowing density, mech	nanical weeding			
	Diseases: resistan	t cultivar, late sowing, low N fertilization				

	Lodging : low N fe Slugs : late sowing					
Drilling	End of October	Cultivar: resistant Non-treated seeds	Additional seed cost of cultivar, yield reduction due to cultivar		⊗Yield loss risk due to cultivar and late sowing	No fungicide
		Combined tool (seeder+superficial tool) Number of operations: 1 (count 2 in DEXiPM because of combined tool)	Superficial tillage between crops			
		Density: 300 pl /m ² (high)	Sowing density	High density: competitiveness against weeds		Reduction of herbicid
Mechanical weeding	Autumn	2 harrowing (<i>herse étrille</i>) Number of operations: 2	Superficial tillage in crops		⊗Energy and time cost	Reduction of herbicide
Mineral Fertilization	Beginning march	Nb of operations : 1 Total amount: 70N	Mineral N fertilizer applications Total number of treatment operations		Higher N fertilization than wheat because of sunflower as preceding crop (high N consumption)	
	Beginning April	Nb of operations : 1 Total amount: 80N	Mineral N fertilizer applications Total number of treatment operations		Higher N fertilization than wheat because of sunflower as preceding crop (high N consumption)	
Organic Fertilization		No			,	
Molluscicide		No			Late sowing	
Herbicide		No			Late sowing, mechanical weeding	
Fungicide		No			Cultivar, late sowing date, low N fertilization	
Insecticide		No				
Growth regulator		No			Late sowing, low N fertilization	
Other chemical product	dure	No	Page 168 of			

Biological control product (elicitor, pheromone)		Contans: 1kg	Total number of treatment operations	Biological control against sclerotinia on WOSR and sunflower (each year)	©Economical cost	No fungicide on WOSR and sunflower
Irrigation		No				
Harvest	Mid July	Operation: classic (no additional cost) Expected yield 52q	Fuel consumption at harvest			
		Straws exported		Avoid slugs	Soil organic matter	No molluscicide

Appendix B: List of major pests in winter wheat, winter barley and winter oilseed rape for each country

Denmark

A1. Winter wheat – weeds (listing according to economic importance,)

Dicots	Monocots	Perennials
Tripleurospermum inodorum	Apera spica-venti	Elymus repens
Papaver rhoeas	Lolium perenne	Cirsium arvensis
Galium aparine	Alopecurus myosuroides	Artemisia vulgaris
Stellaria media	Poa trivialis	-
Viola arvensis	Poa annua	
Capsella bursa-pastoris		
Fallopia convolvulus		
Polygonum aviculare		

A2. Winter wheat – **diseases** (information available in wheat case study also for the German situation)

Air born	Soil born	Seed born	Debris spread
Septoria leaf blotch	Take all	Stinking smut (Tilletia	Septoria leaf blotch
(Mycosphaerella graminicola)	(Gaeumannomyces graminis var. tritici)	tritici)	(Mycosphaerella graminicola)
Leaf rust (<i>Puccinia</i>	Stinking smut (<i>Tilletia</i>	Fusarium head blight	Tan spot (<i>Pyrenophora</i>
triticina)	tritici)	(Fusarium spp.)	tritici-repentis)
Yellow (stripe) rust	Ergot (Claviceps	Ergot (Claviceps	Eyespot (Oculimacula
(Puccinia striiformis)	purpurea)	purpurea)	spp.)
Powdery mildew		Leaf and Glume	Fusarium head blight
(Blumeria graminis f.		Blotch (Phaeosphaeria	(Fusarium spp.)
sp. tritici)		nodorum)	

A3. Winter wheat – **pests**

Mobile	Less mobile	Soil born
Aphids / virus vector	Orange wheat blossom midge	Slugs (Deroceras agreste & D.
(Sitobion avenae,	(Sitodiplosis mosellana)	reticulatum)
Metopolophium dirhodum,		
Rhopalosiphum padi)		

B1. Winter barley – weeds

diversifying crop protection

Dicots	Monocots	Perennials
Tripleurospermum inodorum	Apera spica-venti	Elymus repens
Papaver rhoeas	Lolium perenne	Cirsium arvensis
Galium aparine	Alopecurus myosuroides	Artemisia vulgaris
Stellaria media	Poa trivialis	
Menduire		M 6

Viola arvensis Capsella bursa-pastoris Fallopia convolvulus Polygonum aviculare Persicaria maculosa Poa annua

B2. Winter barley – **diseases** (most of the problems are also relevant for spring barley)

Air born	Soil born	Seed born	Debris spread
Leaf rust (Puccinia		Smut (<i>Ustilago nuda</i>	Net blotch
hordei)		f.sp. hordei)	(Pyrenophora teres)
Mildew (Blumeria		Leaf stripe	
graminis)		(Drechslera graminea)	
Net blotch		Net blotch	
(Pyrenophora teres)		(Pyrenophora teres)	
Leaf scald		Fusarium head blight	
(Rhynchosporium		(Fusarium spp.)	
secalis)			

B3. Winter barley – **pests** (also relevant for spring barley apart from slugs)

Mobile	Less mobile	Soil born
Aphids / virus vector		Slugs (Deroceras agreste & D.
(Sitobion avenae,		reticulatum)
Rhopalosiphum dirhodum,		
Metopolophium padi)		

C1. Winter oil seed rape – weeds

Dicots	Monocots	Perennials
Sinapis arvensis	Lolium perenne	Elymus repens
Raphanus raphanistrum	Alopecurus myosuroides	Cirsium arvensis
Capsella bursa-pastoris	Volunteers (barley/wheat)	
Tripleurospermum inodorum	Apera spica-venti	
Papaver rhoeas	Poa annua	
Galium aparine		

C2. Winter oil seed rape – **diseases** (include fungicide as a growth regulator)

Air born	Soil born	Seed born	Debris spread
Alternaria (Altenaria	Sclerotinia stem rot	Phoma (Phoma	Phoma (Phoma
spp)	(sclerotinia sclerotium)	lingam)	lingam)
Phoma (Phoma	Clubroot	Alternaria (Altenaria	
lingam)	(Plasmodiophora brassicae)	spp)	
NAME OF THE PARTY	orassicae)		

Grey rot (Botrytis cinerea)

C3. W. oil seed rape – pests

Mobile	Less mobile	Soil born
Pollen beetle (Meligethes	Brassica pod midge (Dasineura	Slugs (Deroceras agreste & D.
aeneus)	brassicae)	reticulatum)
Cabbage stem flea beetle		
(Psylliodes chrysocepthala)		
Cabbage seed weevil		
(Ceutorhynchus assimilis)		

France

<u>A1. Winter wheat – weeds (listing according to economic importance)</u>

Dicots	Monocots	Perennials
Galium aparine	Alopecurus myosuroides	Cirsium arvensis
Stellaria media	Apera spica-venti	Elymus repens (Elytrigia
		repens)
Viola arvensis	Lolium perenne	
Capsella bursa-pastoris	Bromus sterilis	
Sinapis arvensis	Poa annua	
Veronica hederifolia		
Tripleurospermum inodorum		

A2. Winter wheat – diseases (information available in wheat case study also for the German situation)

Air born	Soil born	Seed born	Debris spread
Septoria tritici (all 1)	Take all	Tilletia	Septoria tritici (all 1)
Brown rust (FR 2)	Tilletia	Fusarium	Tanspot
Yellow rust	Ergot	Ergot	Eyespot
Powdery mildew			Fusarium (FR 3)

'FR 2' means that brown rust would be ranked second in France and 'FR 3' third in France

A3. Winter wheat – pests

Mobile	Less mobile	Soil born
Aphids / virus vector	Orange wheat blossom midge	Slugs
Sitobion avenae,		
Rhopalosiphum dirhodum,		
Rhopalosiphum padi		
Cikade (virus vector)		

B1. Winter barley – weeds

Dicots	Monocots	Perennials
Galium aparine	Alopecurus myosuroides	Cirsium arvensis
Stellaria media	Apera spica-venti	Elymus repens (Elytrigia
		repens)
Viola arvensis	Lolium perenne	
Capsella bursa-pastoris	Bromus sterilis	
Sinapis arvensis	Poa annua	
Veronica hederifolia		
Tripleurospermum inodorum		

B2. Winter barley – diseases (most of the problems are also relevant for spring barley)

Air born	Soil born	Seed born	Debris spread
Brown rust	Take all	Ustilago	Netblotch
Mildew		Leaf stribe	Rhynchosporium
Netblotch		Netblotch	Ramularia
Rhynchosporium		Fusarium	
Ramularia		Ramularia	
		Rhynchosporium	

B3. Winter barley – pests (also relevant for spring barley apart from slugs)

Mobile	Less mobile	Soil born
Aphids / virus vector		Slugs
Sitobion avenae,		
Rhopalosiphum dirhodum,		
Rhopalosiphum padi		

C1. Winter oil seed rape – weeds

Dicots	Monocots	Perennials
Sinapis arvensis	Lolium perenne	Elymus repens
Rhaphanus raphanistrum	Alopecurus myosuroides	Cirsium arvensis
Capsella bursa-partoris	Volunteers (barley/wheat)	
Tripleurospermum inodorum	Apera spica-venti	
Geranium spp.		
Calepina		
Galium aparine		
Orobanche ramosa		

C2. Winter oil seed rape – diseases (include fungicide as a growth regulator)

Air born	Soil born	Seed born	Debris spread
Altenaria	Sclerotinia	Phoma	Phoma
Phoma	Clubroot	Altenaria	
Botrytis	Verticillium		
Cylindrosporium			
Erysiphe			
crucuferarium			

C3. W. oil seed rape – pests

Mobile	Less mobile	Soil born
Pollen beetle	Brassica pod midge	Slugs
Rape stem weevil		
Cabbage stem flea beetle		
Cabbage seed weevil		
Myzus persicae (virus vector)		
Pigeon		

The UK

A1. Winter wheat – **weeds** (listing according to economic importance)

Dicots	Monocots	Perennials
Galium aparine	Apera spica-venti	Elymus repens
Tripleurospermum inodorum	Alopecurus myosuroides	
Papaver rhoeas	Lolium sp.	Cirsium arvensis
	Anisantha sterilis	
Stellaria media	Poa trivialis	
Veronica persica		
Viola arvensis	Poa annua	
Capsella bursa-pastoris		

A2. Winter wheat – diseases (information available in wheat case study also for the German situation)

Air born	Soil born	Seed born	Debris spread
Septoria tritici (all 1)	Take all	Tilletia	Septoria tritici (all 1)
Brown rust (FR 2)	Tilletia	Fusarium	Tanspot
Yellow rust	Ergot	Ergot	Eyespot
Powdery mildew	_	-	Fusarium
w endure		Page 174 of 229	6

A3. Winter wheat – pests

Mobile	Less mobile	Soil born
Aphids important chiefly as virus vectors in autumn:	Orange wheat blossom midge	Slugs
Sitobion avenae	Wheat bulb fly	
Rhopalosiphum padi		
Other aphids:		
Metopolophium dirhodum		

<u>B1. Winter barley – weeds</u>

Dicots	Monocots	Perennials
Galium aparine	Apera spica-venti	Elymus repens
Tripleurospermum inodorum	Alopecurus myosuroides	
Papaver rhoeas	Lolium sp.	Cirsium arvensis
Stellaria media Veronica persica Viola arvensis Capsella bursa-pastoris	Anisantha sterilis Poa trivialis Poa annua	

B2. Winter barley – diseases (most of the problems are also relevant for spring barley)

Air born	Soil born	Seed born	Debris spread
Brown rust	Take all	Ustilago	Netblotch
Mildew		Leaf stribe	Rhynchosporium
Netblotch		Netblotch	Ramularia
Rhynchosporium		Fusarium	
Ramularia		Ramularia	
		Rhynchosporium	

B3. Winter barley – pests (also relevant for spring barley apart from slugs)

Mobile	Less mobile	Soil born	
Aphids important chiefly as	Wheat bulb fly	Slugs	
virus vectors in autumn:			
Sitobion avenae Rhopalosiphum			
padi			
Other aphids:			
Metopolophium dirhodum			

C1. Winter oil seed rape – weeds

Dicots	Monocots	Perennials	
Sinapis arvensis	Lolium sp.	Elymus repens	
Rhaphanus raphanistrum	Alopecurus myosuroides	Cirsium arvensis	
Galium aparine	Volunteers (barley/wheat)		
Capsella bursa-partoris			
Tripleurospermum inodorum	Apera spica-venti		
Papaver rhoeas			
Geranium spp.			
Sonchus sp(?).			
Calepina			

C2. Winter oil seed rape – diseases (include fungicide as a growth regulator)

Air born	Soil born	Seed born	Debris spread
Altenaria	Sclerotinia	Phoma/canker	Phoma/canker
Phoma/canker	Clubroot	Altenaria	
Botrytis	Verticillium		
Cylindrosporium/light			
leaf spot			
Erysiphe			
crucuferarium			

C3. W. oil seed rape – pests

Mobile	Less mobile	Soil born
Pollen beetle	Brassica pod midge	Slugs
Rape stem weevil		
Cabbage seed weevil		
Cabbage stem flea beetle		
Cabbage stem weevil		
Myzus persicae (virus vector)		
Pigeon		

Germany

Appendix C: The impact of agronomic practices on weeds, diseases and invertebrate pests.

Weeds – France, results and experiences

Factor	Description	Source
Cultivars	Wheat: competitive cultivars: high tillering ability, long stems, large planophile leaves. Rape: high early vigor (i.e. high ealy relative growth rate (RGR) of leaf area):	
Crop rotation	hybrids Diversified crop rotation (i.e. diversified sowing dates at the CS level) reduces weed problems, especially those weeds with marked emergence seasonality and low seed persistence (typically: Alopecurus myosuroides). Therefore, crop rotation should be diversified with (i) one early-spring sown crop (spring barley, spring pea, spring faba bean,) AND (ii) one late-spring sown crop (sunflower, maize).	Munier-Jolain, pers. Com.
Sowing date	Wheat and barley: Late sowing reduces infestations of autumn emerging species with marked emergence seasonality (Alopecurus myosuroides, Bromus sp., Lolium perenne). The effect is increased when associated with repeated shallow cultivations before sowing (as shallow as possible: false seed bed). The effect is less important with species with prolonged emergence during winter and early spring (Galium aparine). Rape: late sowing reduces the emergence of species able to emerge during summer time (Geranium species) if associated with repeated shallow cultivations before sowing (as shallow as possible: false seed bed). Early sowing increases the competitive ability against autumn-winter-spring emerging species (Alopecurus myosuroides, Galium aparine, Cirsium arvense), at least when N availability in soils is high in autumn/spring.	Rasmussen I. (2004)
Tillage	Ploughing Ploughing is efficient to manage weeds with low seed persistence (Bromus sp., Alopecurus myosuroides, Apera spica-venti, Lolium multiflorum, Galium aparine). But the frequency of ploughing might depends on the crop rotation (one	Colbach et al.

	and only one ploughing between 2 crops infested by the same species, to avoid replacing buried seeds back up into the top soil layers). At least one ploughing once in the rotation would be preferable to manage grass weeds. Less efficient against weeds with long living seeds, but ploughing still have a 'diluting' effect.	
	Shallow cultivations False seed bed before each sowing when time is available. As shallow as possible to avoid bringing buried seeds back to the top layers before sowing the crop. Repeated cultivation are necessary (i) to maximize the number of germinations (ii) to avoid excessive seedling growth that would reduce their mortality at the subsequent shallow cultivation. Concentrate cultivations at the seasons when species present are able to germinate. Use a shallow cultivating tool that is efficient at killing seedling (shallow Goose-foot shaped blades)	
	Early stubble cultivation might stop seed production of weeds, but might also reduce seed predation (???)	
Mechanical weeding	Wheat: pre-emergence (autumn) and post-emergence weed-harrow or rotary hoe Barley: pre-emergence (autumn) and post-emergence (autumn, when possible) weed-harrow or rotary hoe (barley is sown earlier than wheat) Rape: post emergence weed-harrow or rotary hoe, then inter-row hoeings	ENDURE
Direct drilling in mulch	Direct drilling with a specific equipment without any soil tillage reduces weed seed germination. A mulching with residues of a cover crop might modify soil temperature and also reduce weed emergence. But the technique is not compatible with the false seed bed technique. And the destruction of the cover crop might require an herbicide (which is a problem if the objective is to reduce the reliance on herbicides), unless the chosen cover crop is sensitive to frost.	Debaeke et al.
Nitrogen amounts	High nitrogen availability decreases weed growth in rape, increases weed growth in wheat (ranking nitrophilly: Rape > weeds > wheat)	Valentin-Morison
Nitrogen strategy		
Crop density	Increasing crop density and decreasing row spacing reduce weed growth (in wheat, antagonistic with disease management, but might be possible thanks to	Olsen <i>et al.</i> , 2005 Munier-Jolain, 2004

	late sowings and resistant genotypes)	

Weeds - Denmark, results and experiences

Weeds in winter whe	Description	Source
Variety	Varieties have different competitive abilities. Weed suppressive indexes have been formulated for spring barley and winter wheat. Differences in competitive ability may reach 60% between the most competitive variety and the least. Especially culm length is an important factor for variety competitiveness	Hansen et al. (2008), Christensen (1995)
Crop density	Crop densities below 200 plants m ⁻² will reduce crop competitiveness. Small differences in the area of 250-400 plants m ⁻² . Poor interaction with row spacing	Melander et al. (2003)
Crop establishment pattern	Increasing row spacing reduces crop competiveness against weeds, especially for spacing > 20 cm. Spatial uniformity of crop plant establishment provides more competition than row drilling. And increased seed rates improves crop competitiveness in a grid-like pattern	Melander <i>et al.</i> (2003), Olsen <i>et al.</i> (2005)
Sowing date	Delaying sowing of winter wheat and winter rye by more than 14 days will reduce weed numbers and the competitiveness of established weeds. The effect in winter barley is more vague due to its earlier sowing	Melander (1995)
Effects of nutrients	Fertiliser placement in spring improves crop yield and the more vigorous crop growth might improve crop competitiveness although not convincingly proved. Increasing nitrogen input increases crop competitiveness while low N levels can promote the proliferation of weeds.	Jørnsgaard et al. (1996), Melander et al. (2001), Melander et al. (2003)
Tillage tactics	Ploughing generally leads to fewer weed problems that non-inversion tillage especially if wintering crops are predominant in the rotation. Stale seed bed strategies can reduce the weed numbers emerging in the crop and probably delay their growth relative to the crop. However the effects are very dependent on soil moisture and very dry weather may lead to opposite results. Most weed seeds are preserved when incorporated deeper than 1-2 cm in the soil during the stubble period. <i>Bromus</i> species appear to be the only species deviating from that rule.	Melander & Rasmussen (2001), Melander et al. (2008)

Rotational effects	Diverse crop rotations are probably among the most efficient and reliable	Blackshaw et al. (2007),
	preventive measures that can be taken against unwanted weed growth. However,	Melander et al. (2008)
	rotations need to include a broad mixture of autumn versus spring sown crops,	
	monocot crops versus dicot and perennial crops. Especially annual grass weeds	
	respond strongly to changes in crop rotation.	
Crop species	Introducing winter rye in the rotation will improve crop competitiveness	Blackshaw et al. (2007)
Harvest time	Early harvest of wheat or barley as whole crops for silage strongly prevents weed	Blackshaw et al. (2007)
	seed production and shedding	
Cover crops	Cover crops serving as living mulches in fallow periods that are knocked down	Teasdale et al. (2007)
	prior to crop planting to continue as a dead mulch in the crop have little value in	
	winter crops based cropping systems unless spring sown crops are introduced in	
	the rotation	
Volunteers	Winter wheat volunteers may play a significant role in a subsequent winter barley	
	crop. Stubble cultivation can stimulate germination of crop seeds.	
Margins management	Undesired weed seed spread may occur from cultivated field boundaries creating	Marshall (2009)
	room for the growth of annual weed species. However, margins can act as	
	barriers for the spread of especially perennial weeds, if the boundaries are	
	cultivated enough frequently to prevent weed seed production and vegetative	
	spread of perennials.	
Landscape	No specific impact identified	Marshall (2009)
Soil type	Sandy soil are known to host larger weed populations than clayey soils	
Climate?	Rainy weather promotes weed growth in general and couch grass in particular.	
	Increasing temperatures due to global warming can reduce the effectiveness of	
	herbicides specifically making reduced doses inadequate	

Weeds in winter oilseed rape			
Factor	Description	Source	
Variety	No information		

Crop density	Competitiveness is generally high and there is great plasticity within a large range of plant numbers per m ⁻²	
Crop establishment pattern	Generally high plasticity, row spacing of 50 cm may yield as much as 12 cm row spacing.	
Sowing date	No benefits of delaying sowing date. Delayed sowing may results in poor crop establishment and development	
Effects of nutrients	No specific information available but early and vigorous crop growth is important for the competition against <i>Sinapis arvensis</i>	
Tillage tactics	Ploughing generally leads to fewer weed problems that non-inversion tillage especially if wintering crops are predominant in the rotation. Stale seed bed strategies have limited effect because dry conditions often prevail before sowing the oil seed rape. Inter-row hoeing in oil seed rape grown at 50 cm row spacing can be very effective, usually requiring 1-2 treatments in the autumn and 1 in the spring	
Rotational effects	Diverse crop rotations are probably among the most efficient and reliable preventive measures that can be taken against unwanted weed growth. However, rotations need to include a broad mixture of autumn versus spring sown crops, monocot crops versus dicot and perennial crops. Especially annual grass weeds respond strongly to changes in crop rotation.	Blackshaw et al. (2007), Melander et al. (2008)
Crop species	Introducing winter rye in the rotation will improve crop competitiveness	Blackshaw et al. (2007)
Harvest time	Not relevant	Blackshaw et al. (2007)
Cover crops	The duration between harvest of the preceding crop and winter oil seed rape is too short for attaining any benefits from cover cropping in the fallow period. Establishing oil seed rape successfully in a dead mulch is not possible.	Teasdale et al. (2007)
Volunteers	Winter barley volunteers may play a significant role. Stubble cultivation can stimulate germination of crop seeds but dry weather and the short duration from harvest of winter barley to winter oil seed rape reduces can reduce the effect	
Margins management	Undesired weed seed spread may occur from cultivated field boundaries creating room for the growth of annual weed species. However, margins can act as barriers for the spread of especially perennial weeds, if the boundaries are cultivated enough frequently to prevent weed seed production and vegetative	Marshall (2009)

	spread of perennials.	
Landscape	No specific impact identified	Marshall (2009)
Soil type	Sandy soil are known to host larger weed populations than clayey soils	
Climate?	Rainy weather promotes weed growth in general and couch grass in particular. Increasing temperatures due to global warming can reduce the effectiveness of herbicides specifically making reduced doses inadequate	

References

- Blackshaw RE, Anderson RL & Lemerle D (2007). *Cultural Weed Management*. Non-Chemical Weed Management: Principles, Concepts and Technology, (Editors: M.K. Upadhyaya & R. E. Blackshaw). CAB International (www.cabi.org), Wallingford (UK), 35-47. Christensen S (1995) Weed suppression ability of spring barley varieties. Weed Research 35, 241–247.
- Hansen PK, Kristensen K. & Willas J. (2008). A weed suppressive index for spring barley (*Hordeum vulgare*) varieties. Weed Research 48, 225-236
- Jørnsgard B, Rasmussen K, Hill J, *et al.* (1996). Influence of nitrogen on competition between cereals and their natural weed populations. Weed Research 36(6), 461-470
- Marshall J (2009). The impact of landscape structure and sown grass margin strips on weed assemblages in arable crops and their boundaries. Weed Research 49, 107-115
- Melander B. (1995). Impact of drilling date on *Apera spica-venti* L. and *Alopecurus myosuroides* Huds. in winter cereals. *Weed Research*, *35*, 157-166.
- Melander B., Rasmussen K., Rasmussen I.A. & Jørgensen M.H. (2001). Radrensning med og uden ukrudtsharvning i vintersæd om foråret i samspil med forskellige dyrkningsfaktorer. *18. Danske Planteværnskonference. DJF-rapport nr. 40 (2001), 211-225*.
- Melander B. & Rasmussen K. (2000). Reducing intrarow weed numbers in row crops by means of a biennial cultivation system. *Weed Research*, 40(2), 205-218
- Melander B., Cirujeda A. & Jørgensen M.H. (2003). Effects of inter-row hoeing and fertiliser placement on weed growth and yield of winter wheat. *Weed Research*, 43(6), 428-438.
- Melander B., Holst N., Jensen P.K., Hansen E.M. & Olesen J.E. (2008). *Apera spica-venti* population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. *Weed Research*, 48(1), 48-57.
- Olsen J, Kristensen L. & Weiner J. (2005). Effects of density and spatial pattern of winter wheat on suppression of different weed species. Weed Science 53(5), 690-694
- Teasdale JR, Brandsæter LO, Calegari A. & Skora Neto F. (2007). *Cover crops and Weed Management*. Non-Chemical Weed Management: Principles, Concepts and Technology, (Editors: M.K. Upadhyaya & R. E. Blackshaw). CAB International (www.cabi.org), Wallingford (UK), 49-64.

Weeds – UK, results and experiences

Factor	ass (Alopecurus myosuroides) in winter cereals	Source
	Description	Source
Resistance genes	Evolved herbicide resistance now present in many European countries, particularly in the UK but increasing in France, Germany and other countries too. Enhanced metabolism widespread, but also ACCase and ALS target site resistance. Reduced availability of herbicides will increase resistance issues.	MOSS, S.R. (2004). Herbicide-resistant weeds in Europe: the wider implications. Communications in Agricultural and Applied Biological Sciences (University of Gent, Belgium) 69 (3), 3-11.
Previous crop Frequency in rotation	Greatly favoured by autumn sown crops. The trend to more autumn sown crops is largely responsible for the increases in black-grass.	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth systems. <i>ADAS Quarterly Review</i> 38 , 170-191.
Sowing date	Favoured by early drilling, as a greater proportion of plants then come up in the crop, rather than pre drilling when they could be more easily destroyed. Delaying sowing until spring should help greatly but difficult on heavy soils and fewer herbicides available in spring crops.	MOSS, S.R. (1985). The effect of drilling date, pre-drilling cultivations and herbicides on Alopecurus myosuroides (black-grass) populations in winter cereals. In: Proceedings of the Association of Applied Biologists Aspects of Applied Biology 9: Conference on the Biology and Control of Weeds in Cereals 31-39.

Tillage	Greatly favoured by non-inversion tillage unless high levels of control can be achieved. More uniform germination with minimum tillage can potentially improve control by herbicides. Herbicide resistance increases faster in non-inversion tillage. Increase in surface soil organic matter after prolonged minimum tillage can potentially reduced activity of residual herbicides.	POLLARD, F., MOSS, S.R., CUSSANS, G.W. & FROUD-WILLIAMS, R.J. (1982). The influence of tillage on the weed flora in a succession of winter wheat crops on a clay loam soil and a silt loam soil. Weed Research 22, 129-136. MOSS, S.R. (1979). The influence of tillage and method of straw disposal on the survival and growth of black-grass, Alopecurus myosuroides, and its control by chlortoluron and isoproturon. Annals of Applied Biology 94, 212-126.
Debris	May reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Not relevant.	
Nitrogen amounts	Very tolerant of a wide range of N, but certainly responds positively to increasing N fertilizer levels. Relative response of black-grass v cereal to increasing N levels is difficult to define.	MOSS, S.R., STORKEY, J., CUSSANS, J, PERRYMAN, S.A.M. & HEWITT, M.V. (2004). The Broadbalk long-term experiment at Rothamsted: what has it told us about weeds? <i>Weed Science</i> 52 , 864-873.
Nitrogen strategy	Manipulating N level as a weed control strategy is not a realistic option.	

Crop density Row spacing	Crop density has a moderate effect on black-grass. Low cereal densities (<120 plants/m2) are especially vulnerable. Above 250 cereal plants/m2, little additional reduction in black-grass. Crop density largely effects heads per plant, and hence seed return, rather than weed plant density. Narrow row spacing potentially reduced black-grass, but to a limited degree compared with spacings of 12.5 cm. Wider spacings likely to be much more vulnerable to black-grass.	MOSS, S.R. (1985). The influence of crop variety and seed rate on <i>Alopecurus myosuroides</i> competition in winter cereals. In: <i>Proceedings of the 1985 British Crop Protection Conference - Weeds</i> 701-708.
Margins management	Not particularly relevant as black-grass not a dominant species in field margins.	
Landscape	Not relevant	
Soil type	Favoured by heavy soils or on lighter soils with impeded drainage. Rarely a problem on sandy soils.	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth systems. <i>ADAS Quarterly Review</i> 38, 170-191.
Climate?	Favoured by cool temperate winter conditions, as occur in western Europe. Discouraged by colder winter conditions, as in central and eastern Europe and Scandinavia. Debatable whether recent increase in southern Sweden is due to milder winter conditions (global warming?) or more intensive cropping.	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth systems. <i>ADAS Quarterly Review</i> 38, 170-191.

Factor	Description	Source
Resistance genes	Evolved herbicide resistance now present in many European countries. Enhanced metabolism widespread, but also to a lesser extent ACCase and ALS target site resistance. Reduced availability of herbicides will increase resistance issues.	COCKER, K.M. NORTHCROFT, D. S. COLEMAN, J.O.D. & MOSS S.R. (2001). Resistance to ACCase inhibiting herbicides and isoproturon in UK populations of Lolium multiflorum: mechanisms of resistance and implications for control. Pest Management Science 57, 587-597. ALARCON-REVERTE, R. & MOSS, S.R. (2008) Resistance to ACCase- inhibiting herbicides in the weed Lolium multiflorum Communications in Agricultural and Applied Biological Sciences (University of Gent, Belgium) 73 (4), 899- 902.
Previous crop Frequency in rotation	Favoured by autumn sown crops. The trend to more autumn sown crops is largely responsible for the increases in rye-grass. Rye-grass is a major forage grass and hence is sown very widely on stock farms but may become a major weed in arable crops. However, most cases in UK at least are on all-arable farms where no rye-grass has been sown for 25+ years.	MOSS, S.R., HORSEWELL, J., FROUD-WILLIAMS, R.J. & NDOPING, M.M. (1993). Implications of herbicide resistant <i>Lolium multiflorum</i> (Italian ryegrass). In: <i>Proceedings of the Association of Applied Biologists Aspects of the Association and the Applied Biologists Aspects of the Association of Applied Biologists Aspects of the Association and the Association and the Applied Biologists Aspects of the Association and the Applied Biologists Aspects of the Association and the Association and the Applied Biologists Aspects of the Association and the Applied Biologists Aspects of the Association and the Association and the Applied Biologists Aspects of the Association and the Applied Biologists Aspects of the Association and the Association and the Applied Biologists Aspects of the Association and the Associ</i>

		Applied Biology 35 : Conference on Volunteer Crops as Weeds 53-60.
Sowing date	Favoured by early drilling, as a greater proportion of plants then come up in the crop, rather than pre drilling when they could be more easily destroyed. Delaying sowing until spring should help greatly but difficult on heavy soils and fewer herbicides available in spring crops.	
Tillage	Favoured by non-inversion tillage unless high levels of control can be achieved. More uniform germination with minimum tillage can potentially improve control by herbicides. Herbicide resistance increases faster in non-inversion tillage. Increase in surface soil organic matter after prolonged minimum tillage can potentially reduced activity of residual herbicides.	MOSS, S.R. (2005). Managing herbicide-resistant rye-grass. In: 42nd Annual review of Weed Control, 40-47. British Crop Protection Council.
Debris	May reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Rye-grass volunteers from grassland phase can be source of weed infestation in arable phase of rotation on mixed farms.	ORSON, J. & MOSS, S. R. (2007). Effective, sustainable Italian rye-grass control in winter cereals. <i>HGCA Topic sheet 100</i> . 2pp.
Nitrogen amounts	Certainly responds positively to increasing N fertilizer levels. Relative response of rye-grass v cereal to increasing N levels is difficult to define.	
Nitrogen strategy	Manipulating N level as a weed control strategy is not a realistic option.	
Crop density Row spacing	Crop density has a moderate effect on rye-grass. Low cereal densities (<120 plants/m2) are especially vulnerable. Above 250 cereal plants/m2, little additional reduction in rye-grass. Crop density largely effects heads per plant, and hence seed return, rather than weed plant density. Narrow row spacing potentially reduced rye-grass, but to a limited degree compared with spacings of 12.5 cm. Wider spacings likely to be much more vulnerable to rye-grass.	ALARCON-REVERTE, R. & MOSS, S. R. (2007). The agro-ecology of Italian ryegrass (<i>Lolium multiflorum</i>) as a weed of arable crops. In: <i>Proceedings of the 14th European Weed Research Society Symposium, Hamar, Norway</i> , 164.
Margin mapa en production diversifying crop protection	Sowing rye-grass for grass margins has potential to act as source for rye-grass as Page 188 of	ORSON, J. & MOSS, S. R.

	a weed in the cropped area.	(2007). Effective, sustainable
		Italian rye-grass control in
		winter cereals. HGCA Topic
		sheet 100. 2pp.
Landscape	Not relevant	
Soil type	Grows on a wide range of soils.	
Climate?	Different species favoured by different climates. Italian rye-grass (Lolium	
	multiflorum) favoured by cooler temperate conditions (e.g. UK), whereas Rigid	
	rye-grass (Lolium rigidum) favoured by hotter conditions (absent from UK).	

Pest in crop: Broad-leaved weeds Cleavers (Galium aparine), Chickweed (Stellaria media), Poppy (Papaver rhoeas), Scentless mayweed (Tripleurospermum inodorum) in winter cereals		
Factor	Description	Source
Resistance genes	Evolved ALS target site herbicide resistance now present in poppy in several countries (e,g. UK, Spain, Italy Greece) and in chickweed and mayweed at a lesser frequency. Lack of enhanced metabolism resistance and wider availability of effective alternatives means that resistance in broad-leaved weeds less of an issue than in grass-weeds, but reduced availability of herbicides will increase resistance issues.	MARSHALL, R., MOSS, S. R. & TATNELL, L. (2009). Control of ALS-resistant chickweed and poppy in cereals. <i>HGCA Information Sheet Topic 06.</i> 2pp.
Previous crop	Cleavers is definitely favoured by autumn sown cropping; the other species to a	
Frequency in rotation	lesser degree.	
Sowing date	Much less influential with broad-leaved weeds compared with annual grasses.	
Tillage	In contrast to annual grass weeds, broad-leaved weeds tend to be favoured by ploughing. Non-inversion tillage tends to lead to fewer broad-leaved weeds, but more grass weeds.	
Debris	May reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Not relevant.	
Nitrogen amounts	Cleavers and chickweed responds positively to increasing N fertilizer levels.	

	These four species are major weeds largely due to their ability to continue to compete with the crop at high N levels. Many other annual broad-leaved weeds	
	greatly discouraged by increasing N fertilizer.	
Nitrogen strategy	Reducing N level likely to increase the impact of many broad-leaved weeds.	
Crop density	Crop density has a moderate effect on broad-leaved weeds competition. Narrow	
Row spacing	row spacing potentially reduced broad-leaved weeds impact. Wider spacings	
	likely to be much more vulnerable, although may permit mechanical weed control	
	which is more effective against broad-leaved than grass-weeds.	
Margins management	Margins can potentially act as source of infestation for some broad-leaved weeds (eg cleavers) but other species are adapted to disturbed habitats (cultivated fields)	
	and so do not flourish in field margins.	
Landscape	Not relevant.	
Soil type	Cleavers and chickweed favoured by moisture retentive soils. Other two species	
	less soil specific.	
Climate?	Cleavers and chickweed favoured by cooler temperate conditions (e.g. UK).	
	Other two species less specific.	

Pest in crop: Common couch (Elymus repens) in winter cereals		
Factor	Description	Source
Resistance genes	No evolved herbicide resistance found anywhere worldwide in this species, probably because it is primarily a perennial. Clonal differences in response to	
	herbicides likely, but little researched.	
Previous crop	In past couch was favoured by autumn sown cropping due to reduced time	
Frequency in rotation	available for cultural control. Use of glyphosate has eliminated couch as a major	
	weed problem in cereals.	
Sowing date	Mainly a factor in relation to application date of glyphosate.	
Tillage	Greatly favoured by non-inversion tillage, especially direct drilling.	POLLARD, F., MOSS, S.R.,
		CUSSANS, G.W. & FROUD-
		WILLIAMS, R.J. (1982). The
		influence of tillage on the weed
		flora in a succession of winter

		wheat crops on a clay loam soil and a silt loam soil. Weed
		Research 22 , 129-136.
Debris	May reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Not relevant.	
Nitrogen amounts	Increased nitrogen tends to favour cereals and helps suppress couch to some	
	degree.	
Nitrogen strategy	Manipulating N level as a weed control strategy is not a realistic option.	
Crop density	Crop density has a moderate effect on couch. Narrow row spacing potentially	
Row spacing	reduce competition from couch. Wider spacings likely to be much more	
	vulnerable.	
Margins management	Margins can act as source of infestation for couch.	
Landscape	Not relevant.	
Soil type	Couch favoured by moisture retentive soils.	
Climate?	Couch favoured by cooler temperate conditions (e.g. UK).	

Pest in crop Black-gr	Pest in crop Black-grass (Alopecurus myosuroides) in winter oilseed rape	
Factor	Description	Source
Resistance genes	Evolved herbicide resistance now present in many European countries, Enhanced metabolism widespread, but also ACCase and ALS target site resistance. Oilseed rape plays a key role in the management of resistant black-grass in a rotation, as several herbicides used in this crop are unaffected by resistance (propyzamide, carbetamide, metazachlor)	MOSS, S.R. (2004). Herbicide-resistant weeds in Europe: the wider implications. Communications in Agricultural and Applied Biological Sciences (University of Gent, Belgium) 69 (3), 3-11.
Previous crop Frequency in rotation	Greatly favoured by autumn sown crops. The trend to more autumn sown crops is largely responsible for the increases in black-grass. Oilseed rape generally follows a winter cereal and thus infestations in the rape are driven by seeds shed in this previous cereal	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth
		systems. ADAS Quarterly

		<i>Review</i> 38 , 170-191.
Sowing date	Early sowing tends to favour the growth of the crop. Thus weed competition is lower in crops sown in August and early September. Later sown crops are less vigorous and more vulnerable to competition from grass weeds (including <i>A. myosuroides</i>)	LUTMAN, P.J.W. & DIXON, F.L. (1990) The competitive effects of volunteer barley (Hordeum vulgare) on the growth of oilseed rape (Brassica napus). Annals of Applied Biology, 117, 633-644.
Tillage	Black-grass is favoured by non inversion tillage and direct drilling and reduced by ploughing. However, in oilseed rape the impact of tillage on crop establishment is equally significant. Thus a well established direct drilled crop can be much more suppressive of grass weeds than a less well established crop after ploughing.	POLLARD, F., MOSS, S.R., CUSSANS, G.W. & FROUD-WILLIAMS, R.J. (1982). The influence of tillage on the weed flora in a succession of winter wheat crops on a clay loam soil and a silt loam soil. Weed Research 22, 129-136.
Debris	May reduce crop establishment, thus reducing the ability of the crop to suppress weeds. May also reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Not relevant.	
Nitrogen amounts	Black-grass is very tolerant of a wide range of N, but certainly responds positively to increasing N fertilizer levels. There is still debate as to whether autumn nitrogen improves the rape crop's competitive ability.	
Nitrogen strategy	Manipulating N treatments as a weed control strategy is not a realistic option.	
Crop density Row spacing	The ability of oilseed rape to branch and thus compensate for low crop density is well-known. Populations of 40 plants/m ² can yield as well as 150 plant/m ² . Consequently, increasing crop density has only a marginal effect on the competitive impact of weeds. Crop densities have to be extremely low (<20 plants/m ²) before the weeds (including black-grass) benefit from the increased	
	space.	
Margins management	Not particularly relevant as black-grass not a dominant species in field margins.	
diversifying crop protection	Page 192 of	

Landscape	Not relevant	
Soil type	Favoured by heavy soils, or on lighter soils with impeded drainage. Rarely a problem on sandy soils.	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth systems. <i>ADAS Quarterly Review</i> 38 , 170-191.
Climate?	Favoured by cool temperate winter conditions, as occur in western Europe. Discouraged by colder winter conditions, as in central and eastern Europe and Scandinavia. Debatable whether recent increase in southern Sweden is due to milder winter conditions (global warming?) or more intensive cropping.	MOSS, S.R. (1980). The agroecology and control of blackgrass, <i>Alopecurus myosuroides</i> Huds., in modern cereal growth systems. <i>ADAS Quarterly Review</i> 38 , 170-191.

Pest in crop: volunteer cereals in winter oilseed rape		
Factor	Description	Source
Resistance genes	Volunteer cereals are susceptible to all the main grass weed herbicides used in oilseed rape	
Previous crop Frequency in rotation	The presence of volunteer cereals in rape depends on the presence of seeds shed from the previous cereal crop	
Sowing date	Early sowing tends to favour the growth of the crop. Thus weed competition is lower in crops sown in August and early September. Later sown crops are less vigorous and more vulnerable to competition from volunteer cereals	LUTMAN, P.J.W. & DIXON, F.L. (1990) The competitive effects of volunteer barley (Hordeum vulgare) on the growth of oilseed rape (Brassica napus). Annals of Applied Biology, 117, 633-644.

Tillage	This weed is promoted by non-inversion tillage and especially direct drilling. Volunteer cereals are not a problem if land is ploughed prior to sowing rape.	
	volunteer cerears are not a problem it failed is proughed prior to sowing tape.	
Debris	May reduce crop establishment, thus reducing the ability of the crop to suppress	
	weeds.	
Volunteers	n/a	
Nitrogen amounts	Both rape and volunteer cereals respond positively to increasing N fertilizer	
	levels, so N cannot be used to tip the balance in favour of the crop.	
Nitrogen strategy	Manipulating N level as a weed control strategy is not a realistic option.	
Crop density	The ability of oilseed rape to branch and thus compensate for low crop density is	
Row spacing	well-known. Populations of 40 plants/m ² can yield as well as 150 plant/m ² .	
	Consequently, increasing crop density has only a marginal effect on the	
	competitive impact of weeds. Crop densities have to be extremely low (<20	
	plants/m ²) before the weeds (including vol. cereals) benefit from the increased	
	space.	
Margins management	Not relevant as volunteer cereals arise from seed shed from the previous crop	
Landscape	Not relevant	
Soil type	Present on all soils	
Climate?		

Factor	Description	Source
Resistance genes	Resistance is not yet an issue in relation to the control of the major broad-leaved	
	weeds in rape.	
Previous crop	All these species are common in autumn-sown crops. Charlock is particularly	
Frequency in rotation	difficult to control in rape and so the weed tends to increase if rape is sown too	
	frequently.	
Sowing date	As with the grass weeds, early-sown rape tends to be more competitive against	LUTMAN, P.J.W,
Manali Ika	broad-leaved species, though the evidence of this from research is equivocal	BOWERMAN, P., PALMER,
endure diversifying crop protection	Page 194 of	

		LUTMAN, P.J.W, BOWERMAN, P., PALMER, G.M. & WHYTOCK, G.P. (1993) The competitive effects of broad-leaved weeds in winter oilseed rape. Proceedings 1993 Brighton
		of broad-leaved weeds in winter oilseed rape.
		Proceedings 1993 Brighton
		Crop Protection Conference (Weeds), 1023-1028.
	Non-inversion tillage tends to lead to fewer broad-leaved weeds, but effects are not as clear cut as they are for annual grasses. Variations in seed persistence and germination response to light impact on the response of these broad-leaved weeds to cultivation.	
	May reduce activity of herbicides due to interception, but only in extreme cases. May also impact on seed germination	
Volunteers	Not relevant.	
	Cleavers and chickweed respond positively to increasing N fertilizer levels but so does the crop. The other species are less responsive. Nitrogen use does not have a major effect on the competitive impact of these weeds.	
Nitrogen strategy		
Crop density Row spacing	The ability of oilseed rape to branch and thus compensate for a low crop density is well-known. Populations of 40 plants/m² can yield as well as 150 plant/m². Consequently, increasing crop density has only a marginal effect on the competitive impact of broad-leaved weeds.	LUTMAN, P.J.W, BOWERMAN, P., PALMER, G.M. & WHYTOCK, G.P. (1993) The competitive effects of broad-leaved weeds in winter oilseed rape. Proceedings 1993 Brighton Crop Protection Conference (Weeds), 1023-1028.
endure diversifying crop protection	Page 195 of	(vveeus), 1023-1028.

Margins management	Margins can potentially act as source of infestation for some broad-leaved weeds (eg cleavers) but it is not relevant to most as the margin habitat is not suited to their biology.	
Landscape	Not relevant.	
Soil type	Cleavers and chickweed favoured by moisture retentive soils. Other two species less soil specific.	
Climate?	Severe winters are effective in killing charlock. So milder winters arising from climate change would result in greater survival and more competition from this weed. Cleavers are most competitive as the crop matures in July and so particularly dry summers will reduce the effects of this weed.	LUTMAN, P.J.W, BOWERMAN, P., PALMER, G.M. & WHYTOCK, G.P. (1995) A comparison of the competitive effects of eleven weed species on the growth and yield of oilseed rape. Proceedings 1995 Brighton Crop Protection Conference (Weeds), 877-882.

Pest in crop: Common couch (Elymus repens) in winter oilseed rape		
Factor	Description	Source
Resistance genes	No evolved herbicide resistance found anywhere worldwide in this species, probably because it is primarily a perennial. Clonal differences in response to herbicides likely, but little researched.	
Previous crop	In past couch was favoured by autumn sown cropping due to reduced time	
Frequency in rotation	available for cultural control. Use of glyphosate has eliminated couch as a major	
	weed problem in cereals.	
Sowing date	Mainly a factor in relation to application date of glyphosate.	
Tillage	Greatly favoured by non-inversion tillage, especially direct drilling.	
Debris	May reduce activity of herbicides due to interception, but only in extreme cases.	
Volunteers	Not relevant.	
Nitrogen amounts	Increased nitrogen tends to favour oilseed rape and helps suppress couch to some	

	degree.	
Nitrogen strategy	Manipulating N level as a weed control strategy is not a realistic option.	
Crop density	The ability of oilseed rape to branch and thus compensate for a low crop density	
Row spacing	is well-known. Populations of 40 plants/m ² can yield as well as 150 plant/m ² .	
	Consequently, increasing crop density has only a marginal effect on the	
	competitive impact of common couch.	
Margins management	Margins can act as source of infestation for couch.	
Landscape	Not relevant.	
Soil type	Couch favoured by moisture retentive soils.	
Climate?	Couch favoured by cooler temperate conditions (e.g. UK).	

Appendix C, cultural practises impact on pest, disease and weeds: Cereal pests

Deroceras agreste or D. reticulatum (Slugs) in Cereals (In DK: Snegle)		
Factor		Source
Resistance genes	Not relevant for the Danish farmers	
Previous crop	The frequency of cereals is of little importance. If the previous crop has a moist	
Frequency in rotation	microclimate, the slug population will increase.	
Sowing date	Late sowing increases the risk of attack. This is because an early sown crop is	
_	more established when the attack occurs.	
Tillage	Inverting tillage has a great reducing impact on the slug population. The longer	
	the soil is "black" after harvest of the previous crop and before sowing, the more	
	slugs are killed. If the tillage is followed by harrowing, it is possible to keep the	
	slugs stressed and at the same time reduce the amount of available food. On	
	heavy clay soils, reduced tillage may reduce slug problems, because the loose soil	
	it leaves is a poorer habitat for the slugs.	
Debris	By removing debris, it is easier to dry out the soil, whereby the slugs are killed.	
	At the same time the food supply is kept at a minimum:	
diversifying crop protection	Page 197 of CO	

Volunteers	Not of particular importance	
Nitrogen amounts	Healthy plants are more likely to survive an attack of slugs than stressed plants	
Nitrogen strategy	Follow the general guidelines for fertilization during the growing season.	
Crop density	Not of practical importance as a control option	
Row spacing		
Landscape	In terms of slug problems, moisture is essential. Therefore avoid growing	
	sensitive crops near forests, lakes, streams etc.	
Soil type	Slugs are mainly a problem on clay soils	
Climate?	As the slugs are dependent on moisture to survive, rainy periods promote the	
	activity and therefore the risk of attack. They overwinter as eggs, but as the	
	temperature increases, adults may also survive.	

Oulema melanopus & O. lichenis (Cereal leaf beetle) in Cereals (In DK: Kornbladbille)			
Factor		Source	
Resistance genes	No resistant varieties available to the Danish farmers.		
Previous crop	Not of particular importance		
Frequency in rotation			
Sowing date	Not of particular importance		
Tillage	Not of particular importance, as the beetle overwinters on trees and in forests surrounding the fields		
Debris	Not of particular importance		
Volunteers	Not of particular importance		
Nitrogen amounts	High nitrogen status promotes development of leaf beetles. With the nitrogen levels used in DK, this is however of little practical importance	Planteinfo	
Nitrogen strategy	Follow the general guidelines for fertilization in the growing season		
Crop density	Not of particular importance		
Row spacing			
Landscape	In areas with large amount of overwintering places, there is an increased risk of		
	early attack in the spring		
Soil type	Not of particular importance		
Climate?	At temperatures above 10°C the beetles start to emerge, if there is plenty of light.	Planteinfo	
	The egg laying does not start before the temperature reaches 19-20°C (warm and		
	dry days)		

Factor		Source
Resistance genes	There are wheat varieties on the Danish market, which are resistant towards the orange wheat blossom midge but not lemon blossom midge. These varieties contain certain types of organic acids in the grains, which are not palatable for the larvae. They therefore starve and dye.	Nielsen (2007)
Previous crop Frequency in rotation	As the larva overwinters in the soil, there is a higher risk of attack, if cereals are grown often. Wheat after wheat has been found to increase the population. The larvae are also able to remain in a dormant state for several years on the soil surface, meaning that in practise it is difficult to use the crop rotation for control purposes. The crops in the neighbouring fields are therefore of higher importance.	Nielsen (2007)
Sowing date	Not of particular importance	
Tillage	No clear data for the influence of tillage on the occurrence of lemon and orange wheat blossom midge. Some evidence however suggest that reduced tillage may promote the occurrence	
Debris	Not of particular importance	
Volunteers	Not of particular importance	
Nitrogen amounts	Healthy plants are more likely to withstand attack of the wheat blossom midge	
Nitrogen strategy	Follow the general guidelines for fertilization during the growing season	
Crop density Row spacing	Not of particular importance	
Landscape	Not of particular importance	
Soil type	Attacks have been observed on all soil types	
Climate?	As the wheat blossom midge is a fragile animal, windy and unfavourable weather conditions in general will inhibit large movements. Is it however sunny and calm weather, attacks are more likely to occur.	

Rhopalosiphum padi, Sitobion avenae & Metopolophium dirhodum (aphids) in Cereals (In DK: Bladlus)			
Factor		Source	
Resistance genes	There are no resistant varieties available to the Danish farmers.		
Previous crop	If the previous crop is a grass, and direct sowing is used, aphids may be a		
Frequency in rotation	problem in the autumn, due to the risk of Barley Yellow Dwarf Virus (BYDV)		
Sowing date	The more the sowing of the winter cereals is delayed, the less risk there is for spread of BYDV		
Tillage	Inverting tillage and other actions removing the debris of monocots will reduce the risk of attack		
Debris	Not of particular importance, as the aphids only survive on living plants		
Volunteers	May be a problem as some aphids overwinter on grasses. It is therefore an advantage with some sort of stubble cultivation, as it removes the living places of the aphids		
Nitrogen amounts	A high nitrogen status favours the aphids, as the plant material stays green and therefore more attractive for a longer period. Due to the limitations on nitrogen use in Denmark, this is however of little importance.	Nielsen & Jensen (2001)	
Nitrogen strategy	Follow the general guidelines and recommendations during the growing season, to avoid severe aphid attack		
Crop density Row spacing	Not of particular importance		
Landscape	Not of particular importance		
Soil type	Attacks of aphids occurs on all soiltypes		
Climate?	Aphids benefit from warm and dry conditions. At 15-20°C it takes 10 days to develop a generation. Lower temperatures and moist weather slows down the development, and heavy rain may even kill thousands of aphids. Strong winds and high temperatures also limits the development of the aphids.		

References:

Nielsen. G.C. (2007): *Flyvning af hvedegalmyg følges*, [Online]. Dansk Landbrugsrådgivning Landscentret, Planteproduktion. Skejby. [Cited on the 18th of March 2009]. Last revised 15th of May 2007. Available on the internet: <URL: http://www.lr.dk/planteavl/informationsserier/plantenyt/plnyt_2007-384.htm

Nielsen, G. C. & J.P. Jensen (2001): Markens sygdomme og skadedyr. Dalum Landbrugsskoles Forlag. 21st edition, ISBN: 87-988336-1-8

Appendix C, cultural practises impact on pest, disease and weeds: Cereal pests

BYDV transmission to winter wheat and winter barley by Sitobion avenae and Rhopalosiphum padi			
Description	Source		
Some cv are less susceptible to aphids but there is no true resistance.			
Aphids tend to be more abundant following an arable crop but previous crop has no	(Foster et al., 2004)		
influence on virus levels			
Early sowing likely lead to more virus transmission by cereal aphids on cereals	(Foster et al., 2004)		
(BYDV) [and by <i>Myzus persicae</i> on oilseed rape (BWYV)].			
Late sowing dates may lead to more losses due to slugs.			
Many pest problems may become worse with inversion tillage as many invertebrate	(Stinner & House, 1990)		
predators and are damaged by ploughing. Direct drilling is likely to be of most	(Holland, 2004)		
benefit to predators.			
Direct drilling likely to be cause more virus transmission unless herbicide is used to			
control volunteers (see below).			
Debris on or near the surface is likely to increase slug problems	(Stinner & House, 1990)		
BYDV transmission is likely to be worse if volunteers provide a 'green bridge'			
between one year's cereal crop and the next in the same field.			
Virus levels are higher in weedy fields.	(Foster et al., 2004)		
Not a big problem. Too much nitrogen can lead to large aphid populations but also			
increased plant vigour. Other problems such as lodging are more important.			
	Some cv are less susceptible to aphids but there is no true resistance. Aphids tend to be more abundant following an arable crop but previous crop has no influence on virus levels Early sowing likely lead to more virus transmission by cereal aphids on cereals (BYDV) [and by <i>Myzus persicae</i> on oilseed rape (BWYV)]. Late sowing dates may lead to more losses due to slugs. Many pest problems may become worse with inversion tillage as many invertebrate predators and are damaged by ploughing. Direct drilling is likely to be of most benefit to predators. Direct drilling likely to be cause more virus transmission unless herbicide is used to control volunteers (see below). Debris on or near the surface is likely to increase slug problems BYDV transmission is likely to be worse if volunteers provide a 'green bridge' between one year's cereal crop and the next in the same field. Virus levels are higher in weedy fields. Not a big problem. Too much nitrogen can lead to large aphid populations but also		

Nitrogen		
strategy		
Crop density	Reduced crop density is likely to lead increase the impact of slug damage.	
Row spacing	Increased crop density increases virus transmission in winter as aphids can walk between plants.	
Margin	Diverse margins and beetle banks are likely to reduce aphid pest problems.	
management	Absence of hedges associated with more aphids.	(Foster et al., 2004)
Landscape	No simple relationship exists between aphid numbers, virus levels and landscape but a landscape with much non-arable land use, especially with grass (such as grazing), was often associated with more aphids but less clearly with virus.	(Foster et al., 2004)
Soil type	Soils with a high clay content are less favourable to both aphids and virus is less abundant on crops in clay soils, though not statistically significantly so.	(Foster et al., 2004)
Climate?	Warm winters and warm wet summers would increase the severity of aphid pests.	
	Field aspect, latitude and proximity to the coast influence aphid abundance.	

Orange wheat blossom midge in cereals			
Factor	Description	Source	
Resistance genes	Resistance genes exist but not yet in bread-making wheats		
Previous crop Frequency in rotation	Problems likely to be worse in wheat following wheat as the pest overwinters in the soil.		
Sowing date			
Tillage	Minimum cultivation after cereal crop is likely to enhance survival of the pest but also to enhance survival of its parasitoid.	(Ferguson et al., 2007)	
Debris	No data		
Volunteers	No data		
Nitrogen amounts	No data		
Nitrogen strategy	No data		
Crop density	No data		
Row spacing			
Margin management	No data		

Landscape	No specific data. Diverse landscapes are likely to reduce pest problems	
Soil type	No data. Likely to have an influence as the pest and its parasitoid both overwinter	
	in the soil.	
Climate?		

Slugs on winter wheat and winter barley			
Factor	Description	Source	
Resistance genes	None		
Previous crop Frequency in rotation	Less risk after oilseed rape as there is less debris (see below).		
Sowing date	Late sowing dates are likely to lead to more losses due to slugs.		
Tillage	Slug problems may increase with reduced tillage.	(Holland, 2004; Stinner & House, 1990)	
Debris	Debris on or near the surface is likely to increase slug problems		
Volunteers	No data		
Nitrogen amounts	No data		
Nitrogen strategy	No data		
Crop density Row spacing	Reduced crop density is likely to lead increase the impact of slug damage.		
Margin management	Diverse margins and beetle banks are likely to reduce slug problems as carabids are major predators of slugs.		
Landscape Soil type			

Climate?	Hotter, drier climates would reduce slug problems	

Factor	Description	Source
Resistance		
genes		
Previous crop	Early-harvested crops or crops that leave bare soil exposed (potatoes, sugar beet, red	http://www.hgca.com/minisite_mar
Frequency in	beet and field vegetables) provide egg-laying sites and increase risk.	ager.output/3158/3158/Knowledge
rotation		%20Centre/Pest%20Management/
	Less of a risk when cereals following cereals.	Wheat%20Bulb%20Fly.mspx?mini
		siteId=11
Sowing date	Late sown or backward crops are more at risk.	http://www.hgca.com/document.as
_		px?fn=load&media_id=167&publi
		cationId=276
Tillage		
Debris		
Volunteers		
Nitrogen		
amounts		
Nitrogen		
strategy		
Crop density	Reduced tiller density increases the risk.	http://www.hgca.com/document.as
Row spacing		px?fn=load&media_id=167&publi
		cationId=276
Margin		
management		
Landscape		

Soil type	
Climate?	

UK

References

- Ferguson, A.W., Holdgate, R., Mason, N.S. & Williams, I.H. 2007. Non-inversion tillage to conserve functional biodiversity for biocontrol of oilseed rape pests., pp. 818-819 Proceedings of the XVI International Plant Protection Congress,15-18 October 2007., Vol. 2 The British Crop Production Council, Hampshire, UK., Glasgow, UK.
- Foster, G.N., Blake, S., Tones, S.J., Barker, I. & Harrington, R. 2004: Occurrence of barley yellow dwarf virus in autumn-sown cereal crops in the United Kingdom in relation to field characteristics. Pest Manag. Sci. 60:113-125.
- Holland, J.M. 2004: The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric. Ecosyst. Environ. 103:1-25.
- Stinner, B.R. & House, G.J. 1990: Arthropods and other invertebrates in conservation-tillage agriculture. Annu. Rev. Entomol. 35:299-318.

Appendix C, cultural practises impact on pest, disease and weeds: oilseed rape pests

Psylliodes chrysocephala (UK: cabbage stem flea beetle; DK: rapsjordloppe; FR: altise d'hiver du colza) in oilseed rape		
Factor		Source
Resistance	There are no cultivars available with resistance towards the cabbage stem flea beetle	
genes		
Previous crop	No data	
Frequency in		
rotation		
Sowing date	Earlier-sown crops tend to suffer more severe cabbage stem flea beetle damage in the	Oversigten (2008)
	UK and Denmark probably because there are a limited number of early-emerging	http://www.hgca.com/document.
	crops available and it is warmer so that beetles are more active.	aspx?fn=load&media_id=168&
	By contrast, early-sown organic crops but tended to suffer less damage in France.	publicationId=276
Mond		(Valantin-Morison et al., 2007)
diversifying cron	Page 206 of Page 2	·

Tillage	Shallow tillage reduced damage in organic crops in France and infestation in Germany. Studies in Canada with different species of flea beetle support this. Minimum cultivation after oilseed rape enhances survival of parasitoid wasps.	(Dosdall <i>et al.</i> , 1999; Ulber & Schierbaum-Schickler, 2003; Valantin-Morison <i>et al.</i> , 2007) (Klingenberg & Ulber, 1994)
Debris	Stubble and debris reduced infestation in Germany.	(Ulber & Schierbaum-Schickler, 2003)
Volunteers	No data	
Nitrogen amounts	In conventionally managed crops in Austria there was no influence of nitrogen rates from 45-125 kg/ha. In organic crops in France (soil N levels 54-335 kg/ha), infestation was greater in crops grown in soils with more nitrogen.	(Zaller et al., 2008a; Zaller et al., 2008b) (Valantin-Morison et al., 2007)
Nitrogen strategy	No data	
Margin management	No data	
Crop density Row spacing	In organic crops in France, infestation was less in crops sown at higher densities. Studies in Canada with different species of flea beetle supported this in two out of three years.	(Valantin-Morison <i>et al.</i> , 2007) (Dosdall <i>et al.</i> , 1999)
Landscape	In organic crops in France, regions with a higher proportion of OSR in the landscape were less infested. In organic crops in France, some evidence for increased infestation in less woody landscapes.	(Valantin-Morison <i>et al.</i> , 2007) (Valantin-Morison <i>et al.</i> , 2007)
Soil type	No data	
Climate?	The beetles are capable to survive at low temperatures during the winter. Moisture has proved to be of importance to the development of the beetles. In the spring and summer, the activity of the beetles is favoured by higher temperatures.	<u>Planteinfo</u>

All countries

Phyllotreta spp. (cabbage flea beetles; FR: altises des cruciferes / petites altises) in oilseed rape. More frequent in France in recent			
years; not considered a pest of winter oilseed rape in the UK			
Factor	Description	Source	
Resistance genes	None		
Previous crop	More risk to spring oilseed rape crops if winter oilseed rape is present.		
Frequency in rotation			
Sowing date	More risk with early sowings of winter oilseed rape	CETIOM	
Tillage	No data		
Debris	No data		
Volunteers	No data		
Nitrogen amounts	No data		
Nitrogen strategy	No data		
Crop density	No data		
Row spacing			
Margins management	Most damage is around the field margin but no data on effect of margin management		
Landscape	No data		
Soil type	No data		
Climate?	No data		

Meligethes aeneus (UK: pollen beetle; DK: glimmerbøsse; FR: méligèthes des crucifères) in oilseed rape		
Factor		Source
Resistance	No resistance genes identified.	http://www.hgca.com/document.
genes	Varietal associations and restored hybrids may be more vulnerable to this pest, losing	aspx?fn=load&media_id=168&
	more yield because male fertile plants are attacked and cross pollination is reduced.	publicationId=276
Previous crop Frequency in rotation	In Austria, no effect of previous crop on pollen beetle infestation.	(Zaller <i>et al.</i> , 2008a)
	Backward crops suffer more damage in the UK. (Late-sown crops may be backward in Page 208 of	http://www.hgca.com/document.

	the spring if they suffer slug, frost or pigeon damage)	aspx?fn=load&media_id=168& publicationId=276
Tillage	Minimum cultivation after oilseed rape enhances survival of parasitoid wasps.	http://www.hgca.com/document.aspx?fn=load&media_id=168&publicationId=276 (Ferguson et al., 2007; Klingenberg & Ulber, 1994; Nilsson, 1985; Nitzsche &Ulber, 1998)
Debris	No data, unlikely to have an effect.	
Volunteers	No data. Early-flowering volunteers may attract pollen beetles. This could increase or reduce damage to crop plants.	
Nitrogen amounts	Healthy plants with good growth are generally more tolerant of attack, why it is important that the plants have a good supply of nutrients Low levels of nitrogen are likely to reduce ability to compensate for pollen beetle damage, as indicated by studies on organic crops in France (soil N levels 54-335 kg/ha) In conventionally managed crops in Austria there was no influence of nitrogen rates from 45-125 kg/ha.	(Nilsson 1994; Valantin- Morison et al., 2007) (Zaller et al., 2008a; Zaller et al., 2008b)
Nitrogen strategy		
Crop density Row spacing	Low plant densities are less susceptible in conventionally-grown crops in France. With the increase of plant density the bud stage during which plants are susceptible to pollen beetle is longer. Branching of the flowering raceme is less and so there is less opportunity for compensation. By contrast, in organic fields in France, high plant density was associated with lower crop damage.	(Valantin-Morison et al., 2007)
	In Austria there was no effect of crop density.	(Zaller <i>et al.</i> , 2008a)
Margin management	In Germany old field margins were associated with increased rates of parasitism by parasitoids. In Switzerland, the same effect was associated with wild flower strips.	(Thies & Tscharntke, 1999; Buchi, 2002)
Lands carried diversifying cr	op protection Page 209 of Page	(Thies et al., 2003)

	 (% non crop area) and parasitism rates were positively correlated with landscape complexity but unrelated to % oilseed rape crop area. By contrast, in Austria, the abundance of pollen beetles was positively related to % noncrop area (and to woody areas) and negatively to % oilseed rape area. These differences may be due to methodological differences and differences in non-crop landscape composition. 	(Zaller et al., 2008b)
Soil type	In Austria pollen beetles were more abundant in crops grown on soils with higher yield potential.	(Zaller et al., 2008b)
Climate?	No data. The relative phenology of pollen beetles and flowering is critical. If beetles emerge from overwintering earlier relative to the development of the inflorescence, arriving on the crop at bud stage, the pest will become more serious. Beetles start immigrating to crops when the temperatures reach 13-15°C in the spring.	

Ceutorhynchus obstrictus, syn. C. assimilis (UK: cabbage seed weevil; DK: skulpesnudebille; FR: charançon des siliques)		
Factor		Source
Resistance genes	No genes identified	
Previous crop	No data	
Frequency in rotation		
Sowing date	The seed weevil becomes active at the start of flowering of winter oilseed rape.	
	For this reason, in Denmark spring sown oilseed rape is attacked to a lesser extent than winter oilseed rape.	
Tillage	No data. Seed weevil parasitoids do not overwinter in the soil.	
Debris	Unlikely to have any influence	
Volunteers	No data	
Nitrogen amounts	A well established crop will always tolerate a more severe attack compared to a stressed crop (DK)	
Nitrogen strategy	Follow the general guidelines to assure optimal nutrient status of the crop (DK)	
diversifying crop protection	Page 210 of	

Crop density	No data	
Row spacing		
Margin management	No data	
Landscape	The weevil overwinters in leaf litter in hedges, woodland boundaries etc. As the weevil is very mobile, local changes to the landscape may not influence infestation (DK).	(Dmoch & Klimek, 1975)
Soil type	No data	
Climate?	No data. Spring flight threshold is a little higher than pollen beetle	

Ceutorhynchus napi (rape winter stem weevil; FR: Charançon de la tige du colza); Ceutorhynchus pallidactylus (cabbage stem weevil; FR: Charançon de la tige du chou) in oilseed rape. NB: not significant UK pests		
Factor	Description	Source
Resistance genes	No genes identified	
Previous crop Frequency in rotation	In Austria, no effect of previous crop on stem weevil infestation.	(Zaller et al., 2008a)
Sowing date	In organic fields in France, later sowing dates were associated with increased damage.	(Valantin-Morison et al., 2007)
Tillage	Minimum cultivation after oilseed rape enhances survival of parasitoid wasps.	(Ferguson <i>et al.</i> , 2007; Klingenberg & Ulber, 1994)
Debris	No data	
Volunteers	No data	
Nitrogen amounts	In organic fields in France (soil N levels 54-335 kg/ha), increased soil nitrogen was associated with reduced damage.	(Valantin-Morison et al., 2007)
Nitrogen strategy	There is some evidence that increased nitrogen increases infestation in Croatia. In conventionally managed crops in Austria there was no influence of nitrogen rates from 45-125 kg/ha.	(Culjak <i>et al.</i> , 2009) (Zaller <i>et al.</i> , 2008a; Zaller <i>et al.</i> , 2008b)
Crop density	In organic fields in France, higher plant density was associated with reduced	(Valantin-Morison et al., 2007)
Row spacing endure	damage. In conventionally grown crops in France there was more damage to crops sown at	CETIOM

	high densities	
Margin management	No data	
Landscape	No clear relationship between infestation and the proportion of land under OSR in organic fields in France.	(Valantin-Morison et al., 2007)
	Stem weevil abundance was negatively related to the proportion of land under OSR in Austria (is this a newer OSR-growing area? parasitism rates were low.)	(Zaller et al., 2008b)
	Stem weevil abundance was positively related to the degree of isolation from other OSR fields in Austria.	(Zaller et al., 2008b)
	No clear effect of the degree of woodiness of the landscape in organic fields in France.	(Valantin-Morison et al., 2007)
	In Austria, stem weevil infestations increased with increased woodland in the landscape.	(Zaller et al., 2008b)
Soil type	In Austria stem weevils were more abundant in crops grown on soils with higher yield capacity	(Zaller et al., 2008a)
Climate?	More injurious in dry years	CETIOM

Dasineura brassicae (UK: brassica pod midge; DK: skulpegalmyg; FR: cécidomyie des siliques) in oilseed rape		
Factor		Source
Resistance genes	No genes identified	
Previous crop	In Austria, there was no effect of previous crop on infestation.	(Zaller et al., 2008a)
Frequency in rotation	However, brassica pod midge overwinters in the soil beneath the crop, therefore repeated oilseed rape crops or short rotations including oilseed rape are likely to exacerbate this pest.	(Alford et al., 2003)
Sowing date	No data	
Tillage	Minimum cultivation after oilseed rape enhances survival of a parasitoid wasp but also enhances survival of the pest.	(Ferguson et al., 2007)
Debris	No data	
Volunteers	No data	
Nitrogen amounts	In conventionally managed crops in Austria there was no influence of nitrogen	(Zaller et al., 2008a; Zaller et

	rates from 45-125 kg/ha. A well established crop will always tolerate a more severe attack compared to a stressed crop (DK)	al., 2008b)
Nitrogen strategy	No data	
Crop density Row spacing	In Austria no effect of crop density.	(Zaller et al., 2008a)
Margin management	Often insecticide treatment of the edge of the crop is enough as this insect is very edge-distributed	CETIOM
Landscape	In Austria, pod midge infestations increased with increased woodland and landscape diversity. The pod midge is a rather fragile animal, which may only able to fly over short distances.	(Zaller et al., 2008b)
Soil type	Moist soils promote the hatching of the pod midge (DK)	
Climate?	There are 3 generations of the pod midge every year in DK and UK, two on winter rape and one on spring rape.	

Deroceras agreste or D. Reticulatum (UK: slugs; DK: agersnegle; FR: limace) in oilseed rape		
Factor		Source
Resistance genes	No resistance genes	
Previous crop	The frequency of oilseed rape is of little importance, as long as a proper crop	
Frequency in rotation	rotation is used. If the previous crop has a moist microclimate, the slug	
	population will increase.	
Sowing date	The longer the soil is crop free before sowing, the more slugs are killed. This is	
	however difficult to manage in practical farming, as there is too little time	
	between harvest of the previous crop and sowing of winter oilseed rape.	
Tillage	Inversion tillage reduces slug populations. If the tillage is followed by harrowing,	
	it is possible to keep the slugs stressed and at the same time reduce the amount of	
	available food.	
Debris	By removing debris, it is easier to dry out the soil, whereby the slugs are killed.	
	At the same time the food supply is kept at a minimum.	
Volunteers	Not of particular importance	

Nitrogen amounts	Healthy plants are more likely to survive pest attacks	
Nitrogen strategy	No data	
Crop density	Crops sown at low densities are at greater risk	
Row spacing		L
Landscape	Moisture is essential to slugs.	
	Therefore avoid growing sensitive crops near forests, lakes, streams etc (DK)	L
Soil type	Slugs are more a problematic on clay soils	
Climate?	Wet weather promotes slug survival and activity and therefore the risk of attack.	
	In DK they overwinter as eggs, but as the temperature increases, adults may also	I
	survive, as they do in UK.	1

France

Delia radicum (cabbage root fly; FR: mouche du chou) in oilseed rape				
Factor	Description	Source		
Sowing date	Much more frequent in early sowings	CETIOM		

France

Brevicoryne brassicae (cabbage aphid; FR: puceron cendré du chou) in oilseed rape:		
Factor	Description	
Insecticide	Pyrethroid-resistant cabbage aphids exist in France.	

Oilseed rape insect pests, all countries: References

Alford, D., Nilsson, C. & Ulber, B. 2003. Insect Pests of Oilseed Rape Crops. In: D. Alford (ed.) Biocontrol of Oilseed Rape Pests, 1 ed. Blackwell Publishing, Oxford: 9-42.

Buchi, R. 2002: Mortality of pollen beetle (*Meligethes* spp.) larvae due to predators and parasitoids in rape fields and the effect of conservation strips. Agric. Ecosyst. Environ. 90:255-263.

- Culjak et al., 2009, IOBC WPRS Bulletin (in press)
- Dmoch, J. & Klimek, G. 1975: Badania nad pasozytami chowacza podobnika (*Ceuthorrynchus assimilis* Payk.). III. Obserwacje nad biologia *Trichomalus perfectus* (Walker). Roczniki nauk Rolniczych, Seria E 5:125-136.
- Dosdall, L.M., Dolinski, M.G., Cowle, N.T. & Conway, P.M. 1999: The effect of tillage regime, row spacing, and seeding rate on feeding damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in canola in central Alberta, Canada. Crop Prot. 18:217-224.
- Ferguson, A.W., Holdgate, R., Mason, N.S. & Williams, I.H. 2007. Non-inversion tillage to conserve functional biodiversity for biocontrol of oilseed rape pests., pp. 818-819 Proceedings of the XVI International Plant Protection Congress, 15-18 October 2007., Vol. 2 The British Crop Production Council, Hampshire, UK., Glasgow, UK.
- Giamoustaris A. & R. Mithen (1997): Glucosinolates and disease resistance in oilseed rape (*Brassica napus* ssp. *oleifera*). *Plant pathology*. Vol. 46, PP: 271-275.
- Klingenberg, A. & Ulber, B. 1994: Untersuchungen zum Auftreten der Tersilochinae (Hym., Ichneumonidae) als Larvalparasitoide einiger Rapschadlinge im Raum Gottingen 1990 und 1991 und zu deren Schlupfabundanz nach unterschiedlicher Bodenbearbeitung. J. Appl. Entomol. 117:287-299.
- Nielsen, G. C. & J.P. Jensen (2001): *Markens sygdomme og skadedyr*. Dalum Landbrugsskoles Forlag. 21st edition, ISBN: 87-988336-1-8 Nilsson, C. 1985: Impact of plowing on emergence of pollen beetle parasitoids after hibernation. Zeitschrift Fur Angewandte Entomologie (Journal of Applied Entomology) 100:302-308.
- Nilsson, C. 1994: Pollen beetles (Meligethes spp.) in oil seed rape crops (Brassica napus L.): biological interactions and crop losses Swedish University of Agricultural Sciences, Alnarp.
- Nitzsche, O. & Ulber, B. 1998: Influence of different tillage treatments following the harvest of oilseed-rape on the mortality of pollen beetle (Meligethes spp.) parasitoids. Zeitschrift Fur Pflanzenkrankheiten Und Pflanzenschutz-Journal of Plant Diseases and Protection 105:417-421.
- Nyvall R.F. (1999): Field crop diseases. 3rd edition, Blackwell publishing, ISBN: 0-8138-2079-0, 9780813820798, the UK.
- Thies, C. & Tscharntke, T. 1999: Landscape structure and biological control in agroecosystems. Science 285:893-895.
- Thies, C., Steffan-Dewenter, I. & Tscharntke, T. 2003: Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos 101:18-25.
- Ulber, B. & Schierbaum-Schickler, C. 2003. The effect of tillage regime on the infestation of oilseed rape by the cabbage stem flea beetle, *Psylliodes chrysocephala.*, pp. 1037-11th International Rapeseed Congress, Vol. 3, Copenhagen.
- Valantin-Morison, M., Meynard, J.M. & Dore, T. 2007: Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.). Crop Prot. 26:1108-1120.
- Zaller, J.G., Moser, D., Drapela, T., Schmoeger, C. & Frank, T. 2008a: Effect of within-field and landscape factors on insect damage in winter oilseed rape. Agric. Ecosyst. Environ. 123:233-238.

Zaller, J.G., Moser, D., Drapela, T., Schmoger, C. & Frank, T. 2008b: Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic Appl. Ecol. 9:682-690.

<u>Diseases in barley – all countries</u>

Fusarium head blight				
Factor	Description	Source		
Resistance genes	Varieties with good resistance are known, but differences are less clear compared with wheat.	Bai G 2004		
Previous crop	Maize as previous crop has been found to increase the risk of fusarium head			
Frequency in rotation	blight. Wheat has also been found to potentially increase the risk in some regions.			
Sowing date	Not found to be of specific importance			
Tillage	Ploughing decreases the risk by removing inoculum.			
-	Minimal tillage significantly increases the risk when cereal follows maize.			
Debris	Crop debris on the surface increases the risk of disease development.			
Volunteers	No information available.			
Nitrogen amounts	Literature describes the risk to increase following high N –levels. Practical			
	importance unclear.			
Nitrogen strategy	No information available.			
Crop density	No information available			
Row spacing				
Landscape	No information available			
Soil type	No information available			
Climate	Wet and humid conditions during heading and flowering stimulate attack (GS 51-69)			
Manal Iro	, etc.			

Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Many specific genes are used and described but also non-specific resistance genes are known to be of importance, In particular cultivars with Mlo resistance genes have given stable degrees of resistance.	
Previous crop	If volunteers have been removed the impact is small	
Sowing date	Early sowing is known to increase disease level in autumn, but this rarely have impact on disease levels in spring. Late sowing in the autumn has been seen to increase disease level in spring, as the very young plants in spring generally are more susceptible than early sown crops.	
Tillage	Ploughing has been found to increase the risk of mildew compared with minimal tillage. It is the increased mineralization of nitrogen following ploughing, which stimulates a more severe attack.	
Debris and volunteers	Debris does not directly influence disease levels as mildew is an obligate parasite. Fields with volunteers are an important source of inoculum as it serves as a green bridge for the spread of the disease between seasons. Historically winter barley was banned in some countries in order to minimize the risk of mildew in spring barley.	
Nitrogen amounts	High nitrogen use increases the susceptibility of the crop due to higher N concentration in leaves, easier penetration of the fungus. Possibly also due to denser crop with higher levels of humidity, which stimulates the epidemic.	Jensen & Munk
Nitrogen strategy	Spilt strategies of N are less likely to encourage high disease levels compared to single applications of a single high level	
Crop density	High crop density stimulates mildew development as the humidity in the crop favours disease development. Overlapping in headlands often have higher levels of attack.	
Landscape	The attacks are known to be more severe near hedges and in low and humid parts (black soils) of the field.	
Soil type	Sandy soils are known to stimulate the disease development. This is often related to manganese deficiency which makes the crop more prone to mildew, It might also be related to the crop being more exposed to stress on these soils or higher levels of leaf wetness due to higher differences between plant and soil temperatures. Stress in the form of drought can also increase the risk of mildew.	
Climate	As temperatures rise in the spring, dormant mycelium starts to grow and spores are quickly produced. The disease is not very temperature dependant although 15 C is optimal with relative humidity above 95%. Free water inhibits spore germination. Under dry conditions	

1 C 1' 1 . 1	
spores can be formed in about seven days.	
spores can be formed in about seven days.	

Rhynchosporium in barley		
Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Specific genes are known and described.	
Previous crop	If the previous crop was barley the risk is increased	
Seed born	The disease is seedborne. So seed treated or healthy seed is important.	
Sowing date	Early sowing increase the risk as more lifecyclus can be going on.	
Tillage	Ploughing has been found to decrease the risk of rhynchosporium as it helps to remove inocullum compared with minimal tillage	
Debris and	Debris may directly influence disease levels as conidie spores are released from crop	
volunteers	debris in the autumn. Volunteers may also act as a source of inoculum.	
Nitrogen amounts	High nitrogen amounts increase to some extend the susceptibility of the crop. The effect is not believed to be of major importance within commercially used rates	Jenkyn & Griffiths (1978)
Nitrogen strategy	No information available	
Crop density	No information available	
Landscape	No specific information is known	
Soil type	No specific information is known	
Climate	Dry weather reduces the risk as the disease needs humidty to stimulate development, preferably during 2 days. Optimal temperatures are 15-25 C. Attack developing between first node and heading are most yield reducing.	

Net blotch in barley		
Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Specific genes are known and described.	
Previous crop	If the previous crop was barley the risk is increased	
Seed born	The disease is seedborne. So seed treated or healthy seed is important.	
Sowing date	No information available	
Tillage	Ploughing has been found to decrease the risk of rhynchosporium as it helps to remove inoculum compared with minimal tillage	
Debris and	Debris may directly influence disease levels as conidie spores are released from crop	
volunteers	debris in the autumn. Volunteers may also act as a source of inoculum.	
Nitrogen amounts	High nitrogen amounts increase to some extend the susceptibility of the crop. The	
> T1	effect is not believed to be of major importance within commercially used rates	
Nitrogen strategy	No information available	
Crop density	No information available	
Landscape	No specific information is known	
Soil type	No specific information is known	
Climate	Dry weather reduces the risk as the disease needs humidity to stimulate development. Optimal temperatures are 15-20 C. Attack developing between first node and heading are most yield reducing.	

Eyespot in barley		
Factor	Description	Source
Resistance genes	No specific information about resistance available in barley. The problems in spring barley are small and not relevant but the disease can occur in winter barley.	
Previous crop	Wheat and other cereals increases the risk for attack. Non-cereal crops such as oilseed rape, etc reduce the risk	
Sowing date	Early sowing is known to increase disease risk. Late sowing is seen to decrease the disease level as epidemic generally gets delayed.	
Tillage	Ploughing can increase the risk – thought to be due to increased N-mineralization coupled with deeper drilling. Direct drilling can reduce disease levels as plants have a more open habit with greater air movement. Ploughing can preserve crop debris and then increase the risk once it is brought back to the surface.	
Debris and volunteers	Debris may directly influence disease levels as disease as both ascospores and condiospores are released from crop debris in the autumn.	
Nitrogen amounts	High nitrogen amounts increase to some extent the susceptibility of the crop.	
Nitrogen strategy	No information available	
Crop density	High crop density stimulates development as the humidity increases in a dense crop stand.	
Landscape	No specific information is known	
Soil type	No specific differences seen	
Climate	Dry weather reduces the risk as the disease particularly during elongation the crop as the crop escape the attack by fast growth. Infection occurs at temperatures above 5 C and during wet periods.	Clark et al.

Brown rust in barley		
Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Many specific genes are used and described but also non-specific resistance genes are known to be of importance	Das et al. 2007.
Previous crop	High proportions of susceptible varieties and infected barley crops in the previous year increases the risk of attack as high levels of inoculum potentially can survive to the next season.	
Sowing date	Early sowing is known to increase disease level in autumn. Late sowing in the autumn has been seen to increase disease level in spring, as the very young plants in spring generally are more susceptible than early sown crops.	
Tillage	No information available.	
Debris and volunteers	Debris does not directly influence disease levels as mildew is an obligate parasite. Fields with volunteers are an important source of inoculum as it serves as a green bridge for the spread of the disease between seasons.	
Nitrogen amounts	High nitrogen amounts increase the susceptibility of the crop due to high nitrogen concentrations in leaf tissues, easier penetration in plants and possibly due to denser crop with higher levels of humidity.	
Nitrogen strategy	No information available	
Crop density	No information available.	
Landscape	No information available.	
Soil type	No information available.	
Climate	Severe frosts during the winter will reduce the inoculum and help to reduce disease levels. However, within plants the fungus can survive at very low temperatures. In the spring in mild weather the fungus starts to grow and produces active sporulating lesions. Temperature at 15-22 C and relative humidity of 100% are optimal for spore germination, penetration and production of new spores. The disease is most common in warm summers	

DasMK; Griffey,CA,Baldwin BD;Waldenmaier, CM. Vaughn,ME,Price AM & Brookes. 2007. Host resistance and fungicide control of Brown rust,in barley and effect on grain yield and yield components. Crop Protection v ol. 26, 1422-1430.

<u>Diseases in wheat – all countries</u>

Fusarium head blight		
Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and may help to reduce disease levels.	Bai G 2004
_	Several non-specific genes are used and described e.g. <i>Fhb1</i> from Chinese spring	Buerstmayr et al. 2009
	wheat. Different types of resistance are described: Resistance to initial infection (type	Hilton et al. 1999,
	I), resistance to pathogen (type II), ability to degrade mycotoxins (type III and IV), or	Skinnes et al. 2008
	resistance to grain infection (type V). Tall cultivars are often seen to be less	Parry et al., 1995; Mesterhazy,
	susceptible (longer distance for inoculum to spread). Stak and compact heads are	1999; Bushnell et al., 2003
	known to increase the risk of attack. Open flowering increase the risk of infection.	
Previous crop	Maize as previous crop has been found to increase the risk of fusarium head blight.	Data from DAAS
Frequency in rotation	Wheat has also been found to potentially increase the risk in some regions.	Parry et al., 1995
Sowing date	Not found to be of specific importance	
Tillage	Ploughing decreases the risk by removing inoculum.	Bateman et al. 2007
	Minimal tillage significantly increases the risk when wheat follows maize or wheat.	McMullen et al., 1997
Debris	Crop debris on the surface increases the risk of disease development.	Jørgensen & Olsen, 2007
		Bateman et al. 2007
		Xu 2003; Parry et al., 1995;
		Shaner, 2003
Volunteers	No information available.	
Nitrogen amounts	Literature describes the risk to increase following high N –levels. Practical	Heier <i>et al</i> . 2005
	importance unclear.	Lemmens et al. 2004
		Champeil et al., 2004
Nitrogen strategy	No information available.	
Crop density	No information available	Data from DAAS
Row spacing		
Landscape	No information available	
Soil type	No information available	

Climate	Wet and humid conditions during heading and flowering stimulate attack (GS 51-	Xu 2003; Parry et al., 1995
	69)	

Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Many specific	Xiu-Qiang Huang ¹ 2004
-	genes are used and described but also non-specific resistance genes are known to be of	Lillemo et al. 2008
	importance	
Previous crop	If volunteers have been removed the impact is small	
Sowing date	Early sowing is known to increase disease level in autumn, but this rarely have impact on	Data from DAAS
	disease levels in spring. Late sowing in the autumn has been seen to increase disease level in	Jørgensen et al. 1997
	spring, as the very young plants in spring generally are more susceptible than early sown	
	crops.	
Tillage	Ploughing has been found to increase the risk of mildew compared with minimal tillage. It is	Jørgensen & Olsen (2006)
	the increased mineralization of nitrogen following ploughing, which stimulates a more severe	
	attack.	
Debris and	Debris does not directly influence disease levels as mildew is an obligate parasite. Fields	
volunteers	with volunteers are an important source of inoculum as it serves as a green bridge for the	
	spread of the disease between seasons.	
Nitrogen amounts	High nitrogen use increases the susceptibility of the crop due to higher N concentration in	Olesen et al. 2003
	leaves, easier penetration of the fungus. Possibly also due to denser crop with higher levels of	
	humidity, which stimulates the epidemic.	
Nitrogen strategy	Spilt strategies of N are less likely to encourage high disease levels compared to single	Olesen et al. 2003
	applications of a single high level	
Crop density	High crop density stimulates mildew development as the humidity in the crop favours disease	Jørgensen et al. 1997
	development. Overlapping in headlands often have higher levels of attack.	
Landscape	The attacks are known to be more severe near hedges and in low and humid parts (black	Bjerre et al. 2006
	soils) of the field.	
Soil type	Sandy soils are known to stimulate the disease development. This is often related to	Data from DAAS
	manganese deficiency which makes the crop more prone to mildew, It might also be related	
	to the crop being more exposed to stress on these soils or higher levels of leaf wetness due to	
	higher differences between plant and soil temperatures. Stress in the form of drought can	
	also increase the risk of mildew.	
Climate	As temperatures rise in the spring, dormant mycelium starts to grow and spores are quickly	The encyclopaedia of cerea

produced. The disease is not very temperature dependant although 15 C is optimal with	diseases
relative humidity above 95%. Free water inhibits spore germination. Under dry conditions	
spores can be formed in about seven days.	

Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Specific genes are known and described but also non-specific resistance genes are known to be of importance	Brown et al. 2001
Previous crop	High proportions of wheat in the crop rotation increase the proportion of inoculum and risk for attack. In areas with lots of wheat the level of ascospores will be high.	
Sowing date	Early sowing is known to increase disease level in autumn, which again can result in higher disease levels in spring and summer. Late sowing can decrease disease levels as the epidemic is generally delayed	Jørgensen et al. 1997
Tillage	Ploughing has been found to increase the risk of septoria compared with minimal tillage. This might be related to an increased N-mineralization following ploughing which can stimulate a more severe attack.	Jørgensen & Olsen (2006)
Debris and volunteers	Debris may directly influence disease levels as ascospores are released from crop debris in the autumn. Volunteers are not important as source of inoculum as they will typically be destroyed before the attack becomes visual.	
Nitrogen amounts	High nitrogen amounts increase to some extend the susceptibility of the crop. The effect is not believed to be of major importance within commercially used rates (120-200kg/ha).	Olesen et al. 2003
Nitrogen strategy	Spilt strategies have been seen to reduce the attack compared with single applications.	Olesen et al. 2003
Crop density	Low crop density stimulates septoria development as the disease is spread up the crop by rainsplash which is more effective in thinner crops. Dense crops may reduce rainsplash but have in some trials been found to increase the risk, possibly due to higher humidity in the crop.	Jørgensen et al. 1997
Landscape	No specific information is known	
Soil type	No specific information is known	
Climate	Dry weather reduces the risk as the disease needs 48 hours of humidty to stimulate evelopment. Optimal temperatures are 15-20 C	The encyclopaedia of cereal diseases

Eyespot in wheat Factor	Description	Source
Resistance genes	Varieties with moderate resistance genes are known, and help to reduce disease levels.	Murry et al. 1995 Hugguet Roberts et al. 2001
Previous crop	Wheat and other cereals increases the risk for attack. Non-cereal crops such as oilseed rape, etc reduce the risk	Schulz et al. 1990
Sowing date	Early sowing is known to increase disease risk. Late sowing is seen to decrease the disease level as epidemic generally gets delayed. When wheat is sown after wheat it is recommended if possible and practical to delay the sowing time to minimize the risk.	Schulz et al. 1990
Tillage	Ploughing can increase the risk – thought to be due to increased N-mineralization coupled with deeper drilling. Direct drilling can reduce disease levels as plants have a more open habit with greater air movement. Ploughing can preserve crop debris and then increase the risk once it is brought back to the surface.	Schulz et al. 1990
Debris and volunteers	Debris may directly influence disease levels as disease as both ascospores and condiospores are released from crop debris in the autumn.	
Nitrogen amounts	High nitrogen amounts increase to some extent the susceptibility of the crop.	
Nitrogen strategy	No information available	
Crop density	High crop density stimulates development as the humidity increases in a dense crop stand.	Jørgensen et al. 1997
Landscape	No specific information is known	
Soil type	No specific differences seen in some countries other see some differences.	Schulz et al. 1990
Climate	Dry weather reduces the risk as the disease particularly during elongation the crop as the crop escape the attack by fast growth. Infection occurs at temperatures above 5 C and during wet periods.	The encyclopaedia of cereal diseases

Factor	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Many	Hovmøller, 2007
	specific genes are used and described but also non-specific resistance genes are	Bariana et al. 2001
	known to be of importance	Singh <i>et al</i> . 2000
Previous crop	High proportions of susceptible varieties and infected wheat in the previous year	Gladders et al. 2007
	increases the risk of attack as high levels of inoculum potentially can survive to the	
	next season.	
Sowing date	Early sowing is known to increase disease level in autumn. Late sowing in the	Gladders et al. 2007
	autumn has been seen to increase disease level in spring, as the very young plants in	
	spring generally are more susceptible than early sown crops.	
Tillage	No information available.	
Debris and	Debris does not directly influence disease levels as mildew is an obligate parasite.	
volunteers	Fields with volunteers are an important source of inoculum as it serves as a green	
	bridge for the spread of the disease between seasons.	
Nitrogen amounts	High nitrogen amounts increase the susceptibility of the crop due to high nitrogen	Bryson et al.
	concentrations in leaf tissues, easier penetration in plants and possibly due to denser	HGCA report
	crop with higher levels of humidity.	
Nitrogen strategy	No information available	
Crop density	High crop density stimulates yellow rust development as the humidity in the crop	
	increases disease development.	
Landscape	No information available.	
Soil type	No information available.	
Climate	Severe frosts during the winter will reduce the inoculum and help to reduce disease	Christensen, et al.1993
	levels. However, within plants the fungus can survive at very low temperatures. In	Gladders et al. 2007
	the spring in cool moist weather the fungus starts to grow and produces active	The encyclopaedia of cereal
	sporulating lesions. Temperature at 10-15 C and relative humidity of 100% are	diseases
	optimal for spore germination, penetration and production of new spores.	

Brown rust in whe	Description	Source
Resistance genes	Varieties with good resistance are known, and help to reduce disease levels. Many specific genes are used and described but also non-specific resistance genes are known to be of importance	Singh <i>et al</i> . 2000
Previous crop	High proportions of susceptible varieties and infected wheat in the previous year increases the risk for attack as high levels of inoculum potentially can survive to the next season.	
Sowing date	Early sowing is known to increase disease level in autumn. Late sowing in the autumn has been seen to increase disease level in spring, as the very young plants in spring generally are more susceptible than early sown crops.	
Tillage	No information available.	
Debris and volunteers	Debris does not directly influence disease levels as mildew is an obligate parasite. Fields with volunteers are an important source of inoculum as it serves as a green bridge for the spread of the disease between seasons.	
Nitrogen amounts	High nitrogen amounts increase the susceptibility of the crop due to high N-content of leaves, easier penetration in plants grown at high N levels but also due to denser crop with higher levels of humidity, which favours the epidemic.	
Nitrogen strategy	No information available	
Crop density	Dense crops likely to favour the disease as higher levels of humidity favour the disease	
Landscape	No information available.	
Soil type	No information available.	
Climate	Severe frosts during the winter will reduce the inoculum and help to minimize the disease level. Mild winter and warm spring and summer weather stimulate attack. Temperatures between 15 and 22 C accompanied by 100% relative humidity are needed for sporulation and spore germination.	The encyclopaedia of cereal diseases

Tan spot in wheat		
Factor	Description	Source
Resistance genes	Varieties with moderate resistance are known, and help to reduce disease levels. Few specific genes are described for this disease.	Jørgensen & Olsen 2007
Previous crop	Wheat as previous crop increases the risk of attack as high levels of inoculum potentially can survive to the next season on debris	Jørgensen & Olsen 2007
Sowing date	No information available. Disease will in most regions in Europe first develop in spring as ascospores need to ripen and spread. This normally takes place in April.	
Tillage	Tillage is found to have a major impact on the disease. Increasing amounts of straw and debris increase the amount of inoculum. Ploughing will minimize the disease risk to a very low level.	Jørgensen & Olsen 2007 Jensen <i>et al.</i> 2001
Debris and	Debris from a previous crop of wheat left on the surface will increase the risk of tan	Jørgensen & Olsen 2007
volunteers	spot as a source of inoculum for both ascospores and condiospores.	Jensen et al. 2001
Nitrogen amounts	No information available.	
Nitrogen strategy	No information available	
Crop density	No information available	
Landscape	No information available.	
Soil type	No information available.	
Climate	Weather conditions which stimulate the breakdown of debris will help to reduce the inoculum. Warm and humid summers stimulate disease development. Optimum temperatures are between 20-28 C accompanied by long periods of dew or rain (18 hours or more)	The encyclopaedia of cereal diseases

Factor	Description	Source
Resistance genes	There are no varieties with specific resistance genes. Different wheat varieties have been found to build up different amounts of take-all inoculum in the soil, when grown as first cereal crop.	Gutteridge et al. 2008
Previous crop	The disease is usually most severe in second, third or fourth successive cereal crops, but generally declines in importance in continuous cereals. Oats and broad leaved crops like oilseed rape as the previous crop will reduce the risk of take all.	Gutteridge et al. 2008 Cook 2003
Sowing date	Early sowing is known to increase disease risk. Late sowing is seen to decrease the disease level as the epidemic is delayed. When wheat is sown after wheat it is recommended to delay the sowing time to minimize the risk. A crop sown in ideal conditions is better than one where soil structure is poor.	Bødker <i>et al.</i> 1990. Schulz & Jørgensen 1993 Gutteridge <i>et al.</i> 1987
Tillage	Tillage is found sometimes to have a major impact on the disease development. Increased levels are sometimes seen following ploughing compared with non-inversion tillage, but sometimes the opposite can take place. It relates to factors like soil compaction, water content, etc. Light puffy seedbeds can encourage the development of the disease. In short sequences of cereals, ploughing generally has an advantage.	Gutteridge et al. 2008 Cook 2003
Debris and volunteers	Debris from a previous crop of wheat left in the field will increase the risk. Cereal volunteers and grasses can be carriers of the disease and e.g. make oil seed rape less effective as a break crop.	Gutteridge & Hornby 2003
Nitrogen amounts	Reduced levels of N can increase the risk of attack as the crop has limited sources to develop root systems. Ammonium sulphate consistently has given less disease compared with ammonium nitrate, urea and ammonium chloride fertilisers.	Gutteridge et al. 1987
Nitrogen strategy	Early applications of N in February/March, followed by the main dressing in April will help to reduce the severity on the roots.	Gutteridge et al. 2008
Crop density	No information available	
Landscape	No information available.	
Soil type	Take all causes most damage on light soils (Sand, Sandy loams and loams), particularly if they are alkaline in nature. Crops grown on more sandy soils are more likely to develop take all as plants are more likely to suffer from drought stress. Poor drainage increase risk.	Gutteridge et al. 2008
Climate	Weather conditions which stimulate disease development is warm and moist autumns and winters. Wet springs and dry summers.	The encyclopaedia of cereal diseases

References

Brown JKM, Kema GHJ, Forrer HR, Verstappen ECP, Arraiano LS, Brading PA, Foster EM, Fried PM, Jenny E (2001) Resistance of wheat cultivars and breeding lines to septoria tritici blotch caused by isolates of *Mycosphaerella graminicola* in field trials. Plant Pathol 50:325–38

Bariana HS, Hayden MJ, Ahmed NU, Bell JA, Sharp PJ, McIntosh RA (2001) Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. J Agric Res 52:1247–1255

Bateman, GL; R. J. Gutteridge, Y. Gherbawy, M. A. Thomset and P. Nicholson. 2007. Infection of stem bases and grains of winter wheat by *Fusarium culmorum* and *F. graminearum* and effects of tillage method and maize-stalk residues. Plant Pathology 56:, 604–615.

Bjerre, K. Jørgensen, LN & Olesen JE. (2006) Site-specific management of crop disease. In: Handbook of Precision Agriculture – Principles and Applications. Eds, A. Srinivasan. Food production press 207-251

Buerstmayr H., Ban T., Anderson J. 2009. QTL mapping and marker-assisted selection for *Fusarium* head blight resistance in wheat: a review. Plant Breeding 128, 1—26

Butteridge RJ Hammond-Kosack KE 2008 Strategies for the control of take all. BSPP Presidential meeting Cereal Pathosystems. London 75-87

Bødker, L., Schultz, H., & Kristensen, K. 1990. Influence of cultural practices on incidence of take-all (Gaeumannomyces graminis var tritici) in winter wheat and winter rye. Tidsskrift for Planteavl. **94**, 201-209.

Christensen, K., Jørgensen, L. N. og Secher, B. J. M. 1993. Udvikling af gulrustmodel ud fra historiske data. 10. Danske Planteværnskonference, Sygdomme og skadedyr. Tidskrift for Planteavls specialserie S 2237, 71-78.

Cook, RJ 2003. Take-all of wheat. Physiological and Molecular Plant Pathology 62: 73-86.

Gladders; Langton¹; Barrie²; Hardwick¹; Taylor¹; Paveley³ 2007 The importance of weather and agronomic factors for the overwinter survival of yellow rust (*Puccinia striiformis*) and subsequent disease risk in commercial wheat crops in England Annals of Applied Biology, Volume 150, Number 3, June 2007, pp. 371-382(12)

Guihua Bai 2004 MANAGEMENT AND RESISTANCE IN WHEAT AND BARLEY TO FUSARIUM HEAD BLIGHT Annual Review of Phytopathology Vol. 42: 135-161 (Volume publication date September 2004)

Gutteridge RJ & Hornby D 2003. Effects of sowing date and volunteers on the infectivity of soil infested with Gaeumannomyces graminis var. tritici and on take all disease in successive crops of winter wheat. Annals of Applied Biology. 143 275-282

Gutteridge RJ, Bateman GL Hornby D. 1987 Comparisons of the effects of spring applications of ammonium chlroidde and other nitrogen fertilizer on take all in winter wheat. Journal of Agricultural Science, Cambridge 108 567-572

Hilton, AJ; P. Jenkinson, T. W. Hollins and D. W. Parry. 1999. Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathology 48: 202–208

Hovmøller M. 2007 Sources of seedling and adult plant resistance to Puccinia striiformis f.sp tritici in european wheats. Plant breeding 126, 225-233

Huguet-Robert V, Dedryver F, Roder MS, Korzun V, Abelard P, Tanguy AM, Jaudeau B, Jahier J. 2001. Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to evespot. Genome, 2001, 44:345-349. [abstract]

Jensen, KF, Jørgensen, LN, Henriksen L, Nielsen GC. 2001 Hvedebladplet – en ny svampe sygdom i Danmark. Grøn Viden Markbrug 232.

Jørgensen, LN, Olsen LV (2007) Control of tan spot (*Drechslera tritici-repentis*) using host resistance. Tillage methods and fungicides. Crop Protection, 26: 1606-1616.

Jørgensen, L.N. Secher B.J.M., Olesen J.E. Mortensen, J. 1997. Need for fungicide treatments when varying agricultural parameters. Aspect of Applied Biology, Optimizing cereal input: Its scientific basis. 50, 285-292.

Lillemo, M. B. Asalf, R. P. Singh, J. Huerta-Espino, X. M. Chen, Z. H. He, Å. Bjørnstad . 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powderymildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166.

Murray TD, de la Peña RC, Yildirim A, Jones SS 1994 A new source of resistance to Pseuudocercosporella herpotrichoides, cause of evespot disease of wheat, located on chromosome 4V of *Dasypyrum villosum*. Plant Breeding, 1994, 113:281-286. [abstract]

Page 232 of Page 2

fungicides in winter wheat 1. Grain yield and foliar disease control Journal of Agricultural Sciences 140, 1-13.

Olesen, J. E.; Jørgensen, L.N., Petersen, J. & Mortensen, J.(2003) Effects of rate and timing of nitrogen fertilizer on disease control by fungicides in winter wheat 2. Crop growth and disease development. Journal of Agricultural Sciences, 140, 15-29.

Schultz, H., Bødker, L., Jørgensen, L.N. & Kristensen, K. 1990. Influence of different cultural practices on distribution and incidence of eyespot (*Pseudocercosporella herpotrichoides*) in winter rye and winter wheat. Tidsskrift for planteavl. **94**, 211-221.

Schulz, H. & Jørgensen, L. N. 1993. Influence of different cultural practices on distribution and incidence of eyespot in Denmark. In 'Exploring the depth of eyespot' ed. G. D. Palmer, Schering AG, Berlin

Singh RP, Huerta-Espino J, Rajaram S (2000) Achieving nearimmunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol et Entomol Hungarica 35:133–139

Skinnes, H, Tarkegne, Y, Dieseth, JA, <u>Bjornstad</u>, <u>A</u>. 2008. Associations between anther extrusion and Fusarium Head Blight in European wheat. Cereal Research Communications 36 Suppl. B: 223-231

Xiangming Xu. 2003. Effects of Environmental Conditions on the Development of Fusarium Ear Blight. E.J. Plant Pathol. 109: 683-689.

Xiu-Qiang Huang¹; Marion S. Röder² 2004 Molecular mapping of powdery mildew resistance genes in wheat: A review Euphytica, Volume 137, Number 2, May 2004, pp. 203-223(21)

Cultural practices impact on diseases in oilseed rape

Phoma stem canker		
Factor	Description	Source
Resistance genes	Varieties with moderate to good resistance are known, and may help to reduce disease levels. Several specific genes have been used over the years are used and described but also non- specific resistance genes are known to be of importance. The <i>L. maculans</i> pathogen has become resistant to some specific genes. Tall cultivars are often seen to be more susceptible (through increased lodging risk).	(Delourme et al., 2006)
Previous crop	Frequency of OSR in rotation is a big issue since inoculum is generated from	(Rempel and Hall, 1993; West
Frequency in rotation	fruiting bodies that develop on the stem debris	et al., 2001)
Sowing date	Some evidence that early sowing (and subsequent production of large plants) prevents the development of canker epidemics. Small plants certainly get hit harder.	(Sun et al., 2000)
Tillage	Ploughing decreases the risk by removing inoculum.	(West et al., 2001)
Debris	OSR crop debris on the surface increases the risk of disease development (even old debris which has been ploughed up).	(Rempel and Hall, 1993; West <i>et al.</i> , 2001)
Volunteers	Not much information, may act as green bridge	
Nitrogen amounts	Literature describes the risk to increase following high N –levels since taller plants are more prone to lodging. Practical importance unclear.	No papers specifically on effect of N on disease
Nitrogen strategy	No information available.	
Crop density Row spacing	No specific information regarding canker	
Landscape	No information available	
Soil type	No information available	
Climate	Wet, warm summers initiate early epidemic onset since ascospores are released earlier when new season OSR plants are small. Severe cankers can result.	(Toscano-Underwood <i>et al.</i> , 2003)

Light leaf spot		
Factor	Description	Source
Resistance genes	Varieties with moderate to good resistance are known, and may help to reduce disease levels. The underlying genetics that underpin resistance are not well understood	(Boys <i>et al.</i> , 2007; Bradburne <i>et al.</i> , 1999)
Previous crop	Frequency of OSR in rotation is a big issue since inoculum is generated from fruiting bodies that develop on the upper stem and pod debris of previous crop. However, this material decomposes quickly, so adjacent fields probably more of a problem unless growing OSR after OSR.	(Fitt et al., 1998; Gilles et al., 2001; Gilles et al., 2000)
Sowing date	Modelling of crop data indicated that soince light leaf spot is a polycyclic disease, early sowing increases risk considerably.	(Welham et al., 2004)
Tillage	Ploughing decreases the risk by removing inoculum.	(Turkington et al., 2000)
Debris and volunteers	OSR crop debris on the surface increases the risk of disease development. Volunteers have been implicated in carry-over of light leaf spot from season to season.	
Nitrogen amounts	Literature describes the risk to increase following high N –thicker canopies increase humidity and therefore risk from pod infection. Practical importance unclear	
Nitrogen strategy	?	
Crop density	No information available.	
Landscape	No specific information regarding canker	
Soil type	No information available	
Climate	Modelling suggests climate change, with increased temperature, light leaf spot will get less severe with the range of the disease shifting north.	Evans et al., unpublished.

Sclerotinia		
Factor	Description	Source
Resistance genes	Some differences between cultivars, but mechanism of resistance not understood.	(Gladders et al., 2009; Koch et
	Generally controlled by one or two spring sprays.	al., 2007)
Previous crop	Rotation important as OSR not the only host for this pathogen. Sclerotia remain in	(Buntin et al., 2007)
	the soil for some time, so OSR in close rotation also increases risk.	
Sowing date	Doesn't affect disease risk directly	
Tillage	Ploughing buries sclerotia, but they can survive for quite long periods. Non-till	(Koch et al., 2007; Sochting
	probably has little effect since sclerotial germination is controlled by environmental	and Verreet, 2004)
	factors	
Debris and	Sclerotia produced in debris, but volunteers not important	
volunteers		
Nitrogen amounts	No effect	(Koch et al., 2007)
Nitrogen strategy	No effect	
Crop density	Most reports no effect	(Koch et al., 2007)
Landscape	No effect reported between different slopes/aspects	(Kutcher et al., 2005)
Soil type	No effect reported	(Koch <i>et al.</i> , 2007; Kutcher <i>et al.</i> , 2005)
Climate	?	

References

- Boys, E.F., Roques, S.E., Ashby, A.M., Evans, N., Latunde-Dada, A.O., Thomas, J.E., West, J.S., and Fitt, B.D.L. (2007) Resistance to infection by stealth: *Brassica napus* (winter oilseed rape) and *Pyrenopeziza brassicae* (light leaf spot). European Journal of Plant Pathology, 118, 307-321.
- Bradburne, R., Majer, D., Magrath, R., Werner, C.P., Lewis, B., and Mithen, R. (1999) Winter oilseed rape with high levels of resistance to Pyrenopeziza brassicae derived from wild Brassica species. Plant Pathology, 48(4), 550-558.
- Buntin, G.D., Cunfer, B.M., Phillips, D.V., and Wilson, J.P. (2007) Sequence and rotation effects on pest incidence and grain yield of double-cropped soybean and pearl millet after winter wheat and canola. Crop Management(October), 1023-1001.
- Delourme, R., Chevre, A.M., Brun, H., Rouxel, T., Balesdent, M.H., Dias, J.S., Salisbury, P., Renard, M., and Rimmer, S.R. (2006) Major gene and polygenic resistance to *Leptosphaeria maculans* in oilseed rape (*Brassica napus*) European Journal of Plant Pathology, 114(1), 41-52.
- Fitt, B.D.L., Doughty, K.J., Gilles, T., Gladders, P., Steed, J.M., Su, H., and Sutherland, K.G. (1998) Methods for assessment of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in the UK. Annals of Applied Biology, 133(3), 329-341.
- Gilles, T., Ashby, A.M., Fitt, B.D.L., and Cole, T. (2001) Development of Pyrenopeziza brassicae apothecia on agar and oilseed rape debris. Mycological Research, 105, 705-714.
- Gilles, T., Evans, N., Fitt, B.D.L., and Jeger, M.J. (2000) Epidemiology in relation to methods for forecasting light leaf spot (Pyrenopeziza brassicae) severity on winter oilseed rape (Brassica napus) in the UK. European Journal of Plant Pathology, 106(7), 593-605.
- Gladders, P., Oxley, S.J.P., Dyer, C., Ritchie, F., Smith, J.A., Roques, S., Moore, A., Maulden, K., and Torrance, J. (2009) New fungicides for oilseed rape: defining dose-response activity. HGCA Project Report(449), 103 pp.
- Koch, S., Dunker, S., Kleinhenz, B., Rohrig, M., and von Tiedemann, A. (2007) Crop loss-related forecasting model for Sclerotinia stem rot in winter oilseed rape. Phytopathology, 97(9), 1186-1194.
- Kutcher, H.R., Malhi, S.S., and Gill, K.S. (2005) Topography and management of nitrogen and fungicide affects diseases and productivity of canola. Agronomy Journal, 97(2), 533-541.
- Rempel, C.B., and Hall, R. (1993) Dynamics of Production of Ascospores of Leptosphaeria-Maculans in Autumn on Stubble of the Current Years Crop of Spring Rapeseed. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 15(3), 182-184.
- Sochting, H.P., and Verreet, J.A. (2004) Effects of different cultivation systems (soil management and nitrogen fertilization) on the epidemics of fungal diseases in oilseed rape (Brassica napus L. var. napus). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 111(1), 1-29.
- Sun, P., Fitt, B.D.L., Gladders, P., and Welham, S.J. (2000) Relationships between phoma leaf spot and development of stem canker (*Leptosphaeria maculans*) on winter oilseed rape (*Brassica napus*) in southern England. Annals of Applied Biology, 137, 113-125.
- Toscano-Underwood, C., Huang, Y.J., Fitt, B.D.L., and Hall, A.M. (2003) Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L-biglobosa on oilseed rape stem debris. Plant Pathology, 52(6), 726-736.

- Turkington, T.K., Clayton, G.W., Klein-Gebbinck, H., and Woods, D.L. (2000) Residue decomposition and blackleg of canola: influence of tillage practices. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 22(2), 150-154.
- Welham, S.J., Turner, J.A., Gladders, P., Fitt, B.D.L., Evans, N., and Baierl, A. (2004) Predicting light leaf spot (*Pyrenopeziza brassicae*) risk on winter oilseed rape (*Brassica napus*) in England and Wales, using survey, weather and crop information. Plant Pathology, 53(6), 713-724.
- West, J.S., Kharbanda, P.D., Barbetti, M.J., and Fitt, B.D.L. (2001) Epidemiology and management of *Leptosphaeria maculans* (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathology, 50, 10-27.

