The necessity and difficulty to involve stakeholders in developing and implementing IPM solutions

Robert Baur

Workshop on co-innovation, Nov. 27/28 2013

2 case studies: It's all about carrots

contents

- Agroscope: who we are and what we do
- Our approach to stakeholder involvement: extension
- 2 case studies compared
 - what was the problem?
 - who wanted to solve the problem?
 - Solutions and Stakeholder involvement
- Conclusions
 - Motivation
 - Co-innovation
 - Communication / boundary work

Agroscope: The Agricultural Research Stations of the Swiss Confederation

- 900 employees
- Associated to ministery of agriculture
- Research & development, expertise and advise for:
 - Farmers and the agri-food chain,
 - Agricultural advisory services
 - the federal ministeries for:
 - Agriculture
 - Environment
 - Public health

Agroscope locations

«extension»: an Agroscope approach to involve stakeholders

- To respond *in time* to the *most important* needs and problems.
- Let stakeholders set the priorities.

Let the stakeholders

evaluate the projects.

- To provide solutions which:
 - can be implemented
 - are holistic and sustainable
 - are economically interesting.
- To facilitate implementation by co-ownership of knowledge.
- Interact and work transdisciplinary.

Workshop 6

How does the Agroscope Extenion work?

Stakeholders set priorities and evaluate results

= interaction, feedback co-innovation?

2 carrot case studies compared

Carrot root fly

Black root rot (chalara spp.)

2 carrot case studies compared what is the problem?

- Carrot root fly
- Yield losses 0% 25%
- Detected after harvest or after storage.

- Black root rot (chalara spp.)
- Yield losses = ?
- Detected after storage or at point of sale or after purchase.

2 carrot case studies compared who needs a solution?

Carrot root fly

- Economic impact for farmers only
- → Farmers need solution

Black root rot (chalara spp.)

 Image problem for retailers → pressure on storehouses → are growers responsible?

How did Agroscope get involved

Carrot root fly

 Problem assigned high priority by grower's extension forum

Black root rot (chalara spp.)

- Request for solution by wholesaler/retailer association (Swisscofel).
- Co-financed project:
 - 25% Swisscofel
 - 25% grower's association
 - 50% government

Q

Carrot root fly: research approach

Möhrenfliegenflug Standort Sandhof, Wädenswil Ch

- Well known problem:
- soil insecticides no longer approved
- Research approach:
 - new insecticide strategies against adult flies based on leaf treatments
 - Timing of sprayings
 - Spray intervals
 - monitoring / supervised control
 - thresholds
- Elements known but participatory work needed to develop best practise stategies

Agroscop

tion Workshop

12

On-farm development of IPM strategy 2010 / 2011

Project plan:

- in every carrot growing regions several farms, recruited by regional advisoroy services (total 12 15)
- common trial protocol
- conclusions from compiled results → improved protocols for following year.

On-farm development of IPM strategy 2010 / 2011

Project organisation

- Agroscope extension vegetable crops
- On-farm support: regional advisory services
- On-farm trial assistance: farmers.

On-farm development of IPM strategy 2010 / 2011

- However: only 3 farms involved
- No conclusions possible
- Project stopped without convincing solution
- Ongoing complaints from growers
- Feeling of researchers. «one more project for an IPM solution that fails at the stage of implementation in practise».

Q

Black root rot (Chalara spp): Who is to blame?

- Chalara = soil-borne disease → farmer
- Harvest conditions/technique → farmer
- Development temperature-dependant
 → storehouse
- Cross-contamination in washing process
 - → storehouse
- Maintenance of cold-chain → retailer
- Farmers vs post-harvest actors
- Single point solution vs chain solution

Black root rot (Chalara spp): project organisation

- Objectives, resources and controlling: board representing grower's and post-harvest chain organisation
- Research and dissemination of results:
 - Agroscope extension team vegetable crops.
 - team of storehouse staff,
 - grower advisors

Black root rot: research and solutions

- All soils contaminated, variable degrees
 - → bioassay to exclude most contaminated fields
- Storage climate and container types
 - → harvest at cool temperatures
- → analysed and improved in all major storehouses
- Cross contamination in recycling-water washing process:
 - → last step with fresh water
 - → evaluation of best equipment
 - → high-pressure shower as last step

Cold chain: critical temperature: 8°C

→ transportation and in retailer's storehouses

recycling water

fresh

Agroscope

V

Black root rot: control of implementation

- Assessment 3 years after end of project
- Complaints at POS: very few
- Farm level: recommendations known, largely implemented
- Storage: all facilities technically improved
- Washing process: re-designed, last step always fresh water
- Post-washing contamination: substantial improvement
- Cold-chain and POS-handling: improved but still mistakes

Project successful

Conclusions (I) stakeholder's motivation to get involved

Carrot root fly

- carrot growers, depending on regional infestation pressure
- Perception: «research wants us to find a way to live with a bad option.»
- Expectation with respect to solution not met by offered options solution

- Black root rot
- Pressure of retailer companies on all actors in chain
- Perception: «we paid for the project, so we make sure the researchers do what we want.»
- Possibility to contribute their own ideas

Lessons learnt:

- First analyse the stakeholder's motivation for involvement.
- Co-develop long-term goal rather than start with focus on solution.
- Try to influence the context in order to influence the motivation.

Conclusions (II) co-innovation

Carrot root fly

- None
- Applied role model:
 - Science as innovator
 - Farmer as adopter

Black root rot

- Research:
 - system / problem analysis
 - Measurement of improvements
- Practical partner:
 - Provide ideas
 - Evaluate solutions
- In collaboration
 - Design solution (incl. iterations)

Lessons learnt:

- The practical perspective is not only «added value» but prerequisit for co-innovation.
- implementation was most supported for solutions based on ideas from practical partners.

Conclusions (III) knowledge translation / boundary work

Carrot root fly

- Unidirectional scientist → advisor → farmer
- Advisors not prepared to accept role as boundary workers
- Scientists not aware of crucial importance of boundary work

Black root rot

- Research team as boundary workers
- Boundaries to bridge:
 - Farmer applied science: mutual trust based on long-term interaction
 - Post-harvest actors science: growing trust
 - farmer (practise) retailer (practise):
 most difficult, researchers not
 legitimated as boundary workers

Lessons learnt:

- Even a long-term history in «stakeholder-driven research» does not guarantee competence and awareness for boundary work
- Effort / resources for boundary work substantial but necessary

Thank you

