Sustainability assessment of future orchard systems

Bart Heijne
WageningenUR/Applied Plant Research (WUR/PPO), the Netherlands
Background

- directive 2009/128/EC « sustainable use of pesticides »
 - integrated pest management
 - careful consideration of all methods
 - discourage harmful organisms
 - keep intervention at economically and environmentally level
 - minimise risk to human health & environment

- Orchard system case study
 - goal:
 - develop methodology to assess possible future orchard systems
 - in line with 2009/128/EC
 - quantitative
> Partners

- 5 countries
 - CH, DE, ES, FR, NL
 - 2009 - 2010

Andrea Patocchi Frank Hayer Jörg Samietz
Andreas Naef Franz Bigler Jörn Strassemeyer
Aude Alaphilippe Gabriele Mack José Hernandez
Bart Heijne Gérard Gaillard Marko Bohanec
Benoit Sauphanor Heinrich Höhn Patrik Mouron
Claire Lavigne Jesus Avilla Ursula Aubert
Esther Bravin Joan Solé
> ‘SustainOS’ methodology

System description
Context, Target and Crop protection parameters

Quantitative assessment methods
- Life Cycle Analysis (LCA)
- Environmental Risk Assessment (SYNOPS)
- Full cost calculation (Arbokost)

Rating
aggregated attributes

Overall Sustainability

Hierarchical attribute tree

Rating basic attributes
of ecological and economic sustainability

(a) System description
(b) Quantitative assessment methods
(c) Rating basic attributes
(d) Hierarchical attribute tree
(e) Overall Sustainability
> Context parameters (29)

- overall quality parameters
 - overall pest management, regional climate, landscape elements, regional pest pressure, soil quality, ecological compensation area
- orchard quality
 - cultivar mixture, training system, orchard size, vigour, pest pressure, fertilisation, mulching between rows, % area under weed control
- infrastructure quality
 - irrigation system, storage, post-harvest treatment, tractor used for spraying
- drift reduction
 - hail net, hedges, drift reducing sprayers
- decision support systems (dss)
 - dss types used, decision making and monitoring
- labour
 - application quality, education and training
Target parameters (31)

- target yield
 - total yield, variability, dramatic yield, portion 1st class, industry, lost
- target price
 - price of 1st class, second class and lost fruit
- quality for resistance management
 - maintenance of resistance, tolerant cultivars, minimising resistance to pathogens and arthropods
- impact on arthropods
 - overall impact on arthropod pests, codling moth, other lepidoptera, aphids, mites, other pests
- impact on diseases
 - overall impact on diseases, apple scab, powdery mildew, fire blight, storage diseases, others e.g. calyx rot, fruit tree canker
- impact on beneficial organisms
 - overall impact on arthropod pests, predatory mites, earwig, Coccinellidae, parasitic hymenoptera
Comparison

- context parameters are region specific
 - no comparison possible between European regions
 - comparison between future orchard systems within a region
- basic quantitative information to describe and assess orchard systems
 - methods to control pests
 o synthetic pesticides
 o non chemical methods
 - date of application
 - dose
 - drift
 - etc.
Available alternative methods

<table>
<thead>
<tr>
<th>Options</th>
<th>BS chosen options</th>
<th>target organisms</th>
<th>AS1 chosen options</th>
<th>target organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mating disruption</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>2 attract and kill</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>3 sanitary methods</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>4 massstrapping</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>5 exclosure netting</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>6 EPN (Nematodes)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>7 predators/parasitoids</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>8 resistant varieties/rootstocks</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>9 push and pull plants/cultivars (attractance and repellance)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Insecticides / Acaricides

<table>
<thead>
<tr>
<th>Insecticide group</th>
<th>Active ingredient</th>
<th>kg/l product per ha</th>
<th>% active ingredient</th>
<th>g a.i. per ha</th>
<th>Number of applications</th>
<th>BS treatments</th>
<th>target organisms</th>
<th>Number of applications</th>
<th>BS treatments</th>
<th>target organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pheromones</td>
<td>codemone a.o.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>2 granulovirus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>48</td>
<td>x</td>
<td>x</td>
<td>0</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>3 IGR's (moulting inhibitors)</td>
<td>novaluron</td>
<td>0.96</td>
<td>10%</td>
<td>96</td>
<td>0.5</td>
<td>22</td>
<td>48</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4 IGR's (ecdysone mimics)</td>
<td>methoxyfenozid</td>
<td>0.64</td>
<td>24%</td>
<td>153.6</td>
<td>1</td>
<td>27</td>
<td>153.6</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5 IGR's (Jh mimics)</td>
<td>fenoxycarb</td>
<td>0.96</td>
<td>25%</td>
<td>240</td>
<td>0.5</td>
<td>20</td>
<td>120</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6 Various</td>
<td>Indoxacarb</td>
<td>0.27</td>
<td>30%</td>
<td>81</td>
<td>1</td>
<td>31</td>
<td>81</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7 neonicotinoids</td>
<td>flonicamid</td>
<td>0.16</td>
<td>50%</td>
<td>80</td>
<td>1</td>
<td>25</td>
<td>80</td>
<td>x</td>
<td>1</td>
<td>17,25</td>
</tr>
<tr>
<td>8 neonicotinoids</td>
<td>thiacloprid</td>
<td>0.32</td>
<td>40%</td>
<td>128</td>
<td>1</td>
<td>20</td>
<td>128</td>
<td>x</td>
<td>x</td>
<td>1,20</td>
</tr>
<tr>
<td>9 organophosphates</td>
<td>chlorpyrifos-ethyl</td>
<td>2.4</td>
<td>23%</td>
<td>552</td>
<td>0.5</td>
<td>17</td>
<td>276</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10 acaricides</td>
<td>tebufenpyrad</td>
<td>0.32</td>
<td>20%</td>
<td>64</td>
<td>1</td>
<td>20</td>
<td>64</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11 oil</td>
<td>32</td>
<td>95%</td>
<td>30400</td>
<td>0.25</td>
<td>0.25</td>
<td>12</td>
<td>7600</td>
<td>x</td>
<td>x</td>
<td>(x)</td>
</tr>
<tr>
<td>12 novel insecticide</td>
<td>30400</td>
<td></td>
<td></td>
<td></td>
<td>0.33</td>
<td>12</td>
<td>10032</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Note: Necessary number of sprays (drive trough orchard) 2

> Example

endure

WAGENINGEN UR

PRAKTIJKONDERZOEK PLANT & OMGEVING
Orchard systems

- 4 apple orchard systems defined
 - base line system (BS)
 - advanced system 1 (AS1)
 - advanced system 2 (AS2)
 - innovative system (IS)

- Base line system (BS)
 - good practices
 - resistance management
 - beneficial organisms
 - pesticides allowed in 2009
 - only synthetic
 - common (susceptible) apple cultivars
 - no drift reduction other than 3 m buffer zone
> Advanced systems

- **Advanced system 1 (AS1)**
 - good and best practices
 - apple scab resistant cultivars
 - mating disruption (codling moth), more hail nets, predatory mites, bio control (e.g. fire blight), cover crop
 - pesticides with low ecotoxicity (more antagonists)
 - drift reduction: 45 % of area

- **Advanced system 2 (AS2)**
 - similar to AS1 + . . .
 - mechanical weeding, exclosure netting, natural fungicides after bloom - no residues
 - drift reduction: 80 % of area
> Innovative system (IS)

- like AS2 + . . .
 - cultivars with multiple resistance
 - apple scab
 - powdery mildew
 - fire blight
 - aphids
 - new pesticides, with
 - selective
 - no effects on non target organisms
Conclusion

- parameters chosen
 - adequate to describe apple orchard systems
 - useful for quantitative data collection
 - collected data
 - can be changed for different situations/conditions, European regions
 - are valid now, but should be renewed, if an assessment is made e.g. 10 years from now

- results
 - apple orchards
 - can be adapted for other crops (PURE)
 - direct policy makers and decision makers

- detailed results in next presentations