Designing innovative winter crops based cropping systems

Bo Melander, Aarhus University
Why redesign cropping systems?

• There is strong economic and strategic need to control pests
• But also strong socio-political and environmental pressure to limit pesticide usage

What constitutes a cropping system?

o Crops and their sequence
o Season of cropping
o Crop management
 — including crop protection measures

All these can influence pesticide use
Winter crops in Denmark, England & France

- Winter wheat, winter oilseed rape & winter barley

 o Denmark, 2008 figures
 - 35% of the total arable area
 - Winter wheat composed 42% of the small grain cereals

 o England, 2007 figures
 - 69% of the total arable area
 - Winter wheat covered 64% of the small grain cereals

 o France, 2007 figures
 - 65% of arable crops
 - Winter wheat composed 56% of the winter crops
Redesigning cropping systems

- **Alternative systems (AS)**
 - Currently available technologies
 - Integrated pest management systems
 - Organic cropping
 - Tested, knowledge of effects in cropping system
 - Ready-to-use

- **Innovative systems, level 1 (IS1)**
 - Existing technologies
 - Not yet tested in cropping systems

- **Innovative systems, level 2 (IS2)**
 - Look into the future, 10-20 years ahead
 - Developing technologies
 - Predict performance in various future scenarios (as defined by ENDURE foresight study)
The Danish approach

- **Current system**
 - Intensive crop and pig producers
 - Strong reliance on pesticides
 - Strenuous crop sequences
 - Major pest problems
 - Annual grass weeds and cleavers
 - Weevil, pollen beetle, aphids
 - Rust, mildew, septoria, net-blotch

- **Non-negotiable requirements:**
 - Secure the supply of forage grain
 - Comply with crop preferences
 - Economically feasible

Danish pesticide consumption is already low
Current crop sequence:
 w barley – w rape – w wheat – w wheat

AS and IS1 crop sequence
 w barley – w rape – w wheat - w wheat + catch crop – s barley + catch crop – s barley

AS tools
- Inversion tillage
- Stubble cultivation
- Choice of variety
- Sowing time
- Row cropping of oilseed rape

IS1 tools
- Farm logistics
- Precision technologies (GPS)
- Breeding programmes
- Trap cropping
- Application, forecasting, decision support

TFI-current: 2.5 ➔ TFI-AS: 1.68 ➔ TFI-IS1: 1.57
The UK approach

- **Current system**
 - Intensive arable
 - Major pest problems
 - black grass (resistance), bromes
 - aphids/virus, flea beetle, pollen beetle (resistance), slugs
 - *Septoria* (resistance), yellow rust, *Phoma*, light leaf spot, *Sclerotinia*

- **Non-negotiable requirements:**
 - Maintain yields and farm incomes

- **Crop protection strategy:**
 - Pesticides and cultural control (e.g. cultivations, sowing date, crop rotation)
Current crop sequence:
w wheat - w wheat/w barley - w oilseed rape

AS crop sequence
w wheat – s beans –
w wheat – s barley – w rape

AS tools
- lengthening rotation
- pesticide targeting and resistance management
- diversifying crops
- minimising tillage where possible
- conservation biological control
- resistant cultivars

IS1 crop sequence
w wheat – s beans – s barley – w rape

IS tools
- lengthening breaks between wheat crops
- greater proportion of spring crops
- precision farming
- trap cropping
- rape on wide rows
- landscape management

TFI-current: 6.2 ➔ TFI-AS: 3.8 ➔ TFI-IS1: 2.7
Innovative cropping systems: The French approach

The French approach

- **Current systems**
 - Intensive cropping systems, low proportion of non-productive areas in the regions considered
 - Strong reliance on pesticides (TFI 5.8-7.1)
 - Major pest problems:
 - Autumn weeds in cereals
 - Stem weevil & pollen beetle in WOSR, aphids in cereals
 - *Septoria* in cereals, *Sclerotinia* in WOSR

- **Characteristics of the farms considered**
 - Equipped for mechanical weeding
 - Opportunity to sell forage crops for cattle livestock
Innovative cropping systems: The French approach

Current crop sequence:
- w rape – w wheat – w barley

AS crop sequence
- w.rape-w.wheat-w.barley-(legumes)-sunflower-w.wheat

AS tools
- Diversify crop rotation
- Use of resistant cultivars against diseases, cultivar mixtures
- Diversify sowing periods (spring crops and sowing dates)
- Mechanical weeding and stale seedbed

IS1 crop sequence
- W.rape-w.wheat-s.barley-(mustard)-sunflower-triticale

IS1 tools
- Enhanced use of AS tools
- Landscape management
- Biological control (e.g. Contans®)

TFI-current: 5.8 – 7.1 → **TFI-AS: 2.2** → **TFI-IS1: 0.4**
Conclusions

Farm level
- Considerable scope for pesticide reduction
- Improved environmental sustainability in the UK and French proposals
- Different local contexts, constraints and priorities led to different approaches to pesticide reduction:
 - UK and DK: Modifying existing systems
 - France: Developing systems from a zero pesticide scenario

National or European level considerations
- Full socioeconomic and environmental analysis needed
- Implications for markets, prices, food security
- Policy instruments for implementation

http://www.endure-network.eu/endure_publications/deliverables (DR 2.16)
Developing higher level innovative cropping systems (IS2)

- **Objectives**
 - Look further ahead, 10-20 years, to the development of higher level innovative systems
 - Identify immature technologies that could contribute to pesticide reductions
 - Help to define long-term research priorities

- **Methodology**
 Workshop with relevant experts:
 - Address the 5 future scenarios described by the ENDURE Foresight study
 - Identify innovative technologies relevant to each scenario
 - Highlight technologies with the most robust potential across all scenarios

http://www.endure-network.eu/endure_publications/deliverables (DR 2.24)