
ENDURE – Deliverable DR4.15 

 

Page 1 of 21 

 

 

 

 

 

ENDURE 
European Network for Durable Exploitation of crop protection strategies 

 

Project number: 031499 

Network of Excellence 
Sixth Framework Programme 

Thematic Priority 5 
FOOD and Quality and Safety 

Deliverable DR4.15 

Modelling-tool software package for end-users 
and developers 

Due date of deliverable: M41 

Actual submission date: M42  

Start date of the project: January 1st, 2007  Duration: 48 months 

Organisation name of lead contractor: Aarhus University 

Revision: V1 

Project co-funded by the European Commission within the Sixth Framework Programme 
(2002-2006) 

Dissemination Level 
PU Public PU 
PP Restricted to other programme participants (including the Commission Services)  
RE Restricted to a group specified by the consortium (including the Commission 
Services) 

 

CO Confidential, only for members of the consortium (including the Commission 
Services) 

 



ENDURE – Deliverable DR4.15 

 

Page 2 of 21 

 

 

Table of contents 

 

Table of contents ...................................................................................... 2 

Glossary ................................................................................................... 3 

Summary .................................................................................................. 4 

1.1.  Objectives .................................................................................................... 4 

1.2.  Rationale ...................................................................................................... 4 

1.3.  Degree of validation and operability of findings ....................................... 4 

1.4.  Teams involved ............................................................................................ 4 

1.5.  Geographical areas covered ...................................................................... 4 

2.  State of the art ................................................................................. 5 

3.  Harmonization of material and methods among the Network .......... 7 

4.  Results ............................................................................................. 7 

5.  Road map ........................................................................................ 7 

Conclusion ................................................................................................ 8 

Appendix A ............................................................................................... 9 



ENDURE – Deliverable DR4.15 

 

Page 3 of 21 

 

 

Glossary 

 

AU  Aarhus University, Denmark 

CNR  Italian National Research Council, Italy 

ENDURE European Network for Durable Exploitation of crop protection strategies 

GPL  GNU General Public License [www.gnu.org/copyleft/gpl.html] 

GUI  Graphical User Interface 

IHAR  Plant Breeding and Acclimatization Institute, Polans 

INRA  French National Institute for Agricultural Research, France 

PRI  Plant Research International, Netherlands 

SSSUP Scuola Superiore Sant'Anna, Italy 

RRES  Rothamsted International, UK 

SZIE  Szent István University, Hungary 

UniSim Universal Simulator Software 

USDA  United States Department of Agriculture, USA 

XML  Extensible Markup Language  [www.w3.org/xml] 
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Summary 

1.1. Objectives  

To develop a generic, open-source software package useful for research and education in 
ecological modelling. 

1.2. Rationale 

Mathematical modelling is often used in ecology to extract and hypothesize general 
relationships from the complexity of the system under study. But even though modelling is an 
apt scientific tool, the sad fate of most ecological models is that they were developed, 
published and soon forgotten. Rarely do we see an example of a model being re-used, and a 
model being developed by one research group and then used by another is a rare encounter 
indeed.  

To improve this situation we developed a new tool: Universal Simulator (UniSim) a software 
package for collaborative ecological modelling. It is composed of a GUI main module which 
is used to open and execute model specifications read from XML files. The XML files specify 
the components constituting a model. The functionality of these components are defined in 
plug-in libraries. This makes UniSim extendible and open for re-use. It is programmed in 
standard C++ but relies on the Qt library. Universal Simulator is open source (GPL) and 
publicly available from www.ecolmod.org. 

1.3. Degree of validation and operability of findings 

UniSim is already used in research for modelling perennial weeds (AU together with PRI and 
RRES), annual weeds (AU together with SSSUP) and insect pests (AU together with USDA).  

UniSim is used regularly as a teaching tool at AU, both at graduate and post-graduate level. 
It will be used as a teaching tool at international workshops, July 2010 in Hungary and 
September 2010 in Tanzania.  

1.4. Teams involved 

AU, CNR, IHAR, INRA, PRI, SSSUP, RRES, SZIE, USDA. 

1.5. Geographical areas covered 

Currently applied in Europe, Africa and USA. The tool is generic and not bound by 
geography. 
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2. State of the art 

The study of weed demography is essential to weed science as it helps to understand one of 
the most troublesome features of weeds, namely their persistence. Mathematical modelling 
is often used, in weed science as in ecology in general, to extract and hypothesize general 
relationships from the complexity of the system under study. But even though modelling is an 
apt tool for weed science, the sad fate of most weed demographic models, recently counted 
at more than 100 (Holst et al. 2007), is that they were developed, published and soon 
forgotten. Rarely do we see an example of a model being re-used,  and a model being 
developed by one research group and then used by another is a rare encounter indeed. It is 
as if all these modellers worked in isolation, developing every little piece of these models 
again and again, despite the many commonalities between their models. It is symptomatic for 
the lack of an appropriate, common modelling tool that weed models are still being written in 
all sorts of programming languages and software. Weed modellers do have access to 
general modelling tools. They are offered as part of many software packages. But these 
packages have been written primarily for and by engineers, not plant ecologists. Hence no 
modelling tools are at hand for the weed modeller, matching her often limited skills in 
mathematics and programming, and her special problem domain: agronomy, ecology and 
economy.  

What weed modellers need is a standardized set of tools that will enable them to collaborate 
and share model components, pieces of well-defined software objects that can be 
interchanged and combined freely: Download the annual life cycle models of species A and 
B, combine them with soil model C and weather generator D, and set it all in the context of 
cropping system model E. We need a way out of modelling as a purely personal, or in the 
best case, small-team exercise. 

A first step in the development of any model is to realize and define for what purpose the 
model is intended. The same goes for the development of a modelling tool. Which questions 
will the models developed with this tool address? WeedML (‘Weed Markup Language’) 
presented in the forthcoming paper WeedML: a Tool for Collaborative Weed Demographic 
Modeling (Holst, 2010) was designed to ease the development of weed demographic 
models, providing both a conceptual framework to ease collaboration and a computational 
framework facilitating the sharing and re-use of models, in part or as a whole.  

The intended use of WeedML models is research and education. Thus WeedML is intended 
as a tool for weed science rather than weed technology. The indiscriminate mixing of weed 
science with weed technology disrupts progress in either discipline (Cousens 1999), whether 
modelling is involved or not, and may be one of the reasons why the usefulness of 
demographic models in weed technology remains to be demonstrated (Freckleton et al. 
2008;Moss 2008). Most often weed demographic models are constructed with the explicit 
purpose of stimulating innovation within weed technology, rather than creating new 
knowledge in weed science, even though the latter seems to be the true driving motive (Holst 
et al. 2007). A model may, for example, claim to be a tool  for ‘finding optimal solutions’ or 
‘designing new control strategies’. But no farmer would dare taking into practice solutions 
underpinned by computational artifact only.  

The development of WeedML was inspired by SBML (‘Systems Biology Markup Language’), 
a language for representation and exchange of biochemical network models (Hucka et al. 
2003). Both WeedML and SBML are dialects of the universal XML standard:  ‘Extensible 
Markup Language (XML) is a simple, very flexible text format ... playing an increasingly 
important role in the exchange of a wide variety of data on the Web and elsewhere' 
(www.w3.org/xml). Initially the authors behind SBML offered only a small selection of 
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software to handle and execute models written in SBML. Their bold initiative could have 
failed, if systems biology researchers and software engineers had ignored their strive for 
standardization, but it was in fact so well received that by June 2009, 210 SBML models and 
170 software packages supporting SBML were accessible at the community web site 
(www.sbml.org). 

WeedML, as described by Holst (2010), was developed as a tool to model weed demography 
but looking back at the finished design, it was obviously as well suited also to model other 
complex systems. This universality is facilitated by the openness that the library system 
gives: any models or output options, or alternative methods of integration, can be added as 
new libraries. The open library structure is also a possible vulnerability. WeedML comes with 
only a limited set of models in its libraries and will only be of general utility, if modellers will 
enrich the first proof-of-concept libraries with new ones to extend the selection of available 
models. Reflecting upon the expressiveness of WeedML it was decided to call the 
accompanying software ‘Universal Simulator’ and, indeed, libraries already exist for 
modelling insects as well as weeds (www.ecolmod.org). 
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3. Harmonization of material and methods among the 
Network 

The Universal Simulator was designed as a tool for collaboration. It can be used as a tool to 
harmonize different model concepts and designs among partners in research and education. 
It is planned to be used for this purpose in an upcoming EU project. 

4. Results 

Universal Simulator is available in the form of the following products: 

 End-uder installation file for Windows (Linux and Mac OS versions scheduled for late 
2010) [www.ecolmod.org]. 

 Source code (C++, XML) for developers  [www.github.com/NielsHolst/UniSim]. 

 A tutorial Universal Simulator Explained [www.ecolmod.org]. Work in progress can be 
downloaded; introductory chapters finished.  

 PhD course Ecological Modelling based on Universal Simulator, running 2010 at AU. 
An e-learning version scheduled for 2011. 

5. Road map 

The continued development of Universal Simulator has been secured by new EU and Danish 
project funds. In addition proposals aiming for USA funds are in preparation. 
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Conclusion 

 A generic, open-source software package Universal Simulator for research and 
education in ecological modelling has been made available.  

 Universal Simulator has raised international interest among ecological modellers in 
both Europe, Africa and USA.  

 Universal Simulator has been approved internationally, as testified by both, new 
projects and projects in preparation, based on Universal Simulator. 
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WeedML is a proposed standard to formulate models of weed demography, or maybe even 
complex models in general, that are both transparent and straightforward to re-use as 
building blocks for new models. The paper describes the design and thoughts behind 
WeedML which relies on XML and object-oriented systems development. Proof-of-concept 
software is provided as open-source C++ code and executables that can be downloaded 
freely. 
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The study of weed demography is essential to weed science as it helps to understand one of 
the most troublesome features of weeds, namely their persistence. Mathematical modeling is 
often used, in weed science as in ecology in general, to extract and hypothesize general 
relationships from the complexity of the system under study. But even though modeling is an 
apt tool for weed science, the sad fate of most weed demographic models, recently counted 
at more than 100 (Holst et al. 2007), is that they were developed, published and soon 
forgotten. Rarely do we see an example of a model being re-used, and a model being 
developed by one research group and then used by another is a rare encounter indeed. It is 
as if all these modelers worked in isolation, developing every little piece of these models 
again and again, despite the many commonalities between their models. It is symptomatic for 
the lack of an appropriate, common modeling tool that weed models are still being written in 
all sorts of programming languages and software. Weed modelers do have access to general 
modeling tools. They are offered as part of many software packages. But these packages 
have been written primarily for and by engineers, not plant ecologists. Hence no modeling 
tools are at hand for the weed modeler, matching her often limited skills in mathematics and 
programming, and her special problem domain: agronomy, ecology and economy.  

What weed modelers need is a standardized set of tools that will enable them to collaborate 
and share model components, pieces of well‐defined software objects that can be interchanged 
and combined freely: Download the annual life cycle models of species A and B, combine them 
with soil model C and weather generator D, and set it all in the context of cropping system model 
E. We need a way out of modeling as a purely personal, or in the best case, small‐team exercise. 

A first step in the development of any model  is to realize and define for what purpose the 
model is intended. The same goes for the development of a modeling tool. Which questions 
will the models developed with this tool address? WeedML (‘Weed Markup Language’) 
presented in this paper was designed to ease the development of weed demographic 
models, providing both a conceptual framework to ease collaboration and a computational 
framework facilitating the sharing and re-use of models, in part or as a whole.  

The intended use of WeedML models is research and education. Thus WeedML is intended 
as a tool for weed science rather than weed technology. The indiscriminate mixing of weed 
science with weed technology disrupts progress in either discipline (Cousens 1999), whether 
modeling is involved or not, and may be one of the reasons why the usefulness of 
demographic models in weed technology remains to be demonstrated (Freckleton et al. 
2008;Moss 2008). Most often weed demographic models are constructed with the explicit 
purpose of stimulating innovation within weed technology, rather than creating new 
knowledge in weed science, even though the latter seems to be the true driving motive (Holst 
et al. 2007). A model may, for example, claim to be a tool  for ‘finding optimal solutions’ or 
‘designing new control strategies’. But no farmer would dare taking into practice solutions 
underpinned by computational artifact only.  

The development of WeedML was inspired by SBML (‘Systems Biology Markup Language’), 
a language for representation and exchange of biochemical network models (Hucka et al. 
2003). Both WeedML and SBML are dialects of the universal XML standard:  ‘Extensible 
Markup Language (XML) is a simple, very flexible text format ... playing an increasingly 
important role in the exchange of a wide variety of data on the Web and elsewhere' 
(www.w3.org/xml). Initially the authors behind SBML offered only a small selection of 
software to handle and execute models written in SBML. Their bold initiative could have 
failed, if systems biology researchers and software engineers had ignored their strive for 
standardization, but it was in fact so well received that by June 2009, 210 SBML models and 
170 software packages supporting SBML were accessible at the community web site 
(www.sbml.org). 
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This paper is an introduction to WeedML. It describes by example the thoughts behind its 
design, its syntax and use. It is a hopeful introduction. WeedML could not possibly match the 
speed at which SBML was suddenly available in a variety of software packages; weed 
ecology is an economically less potent discipline than systems biology. Weed modelers are 
internationally a small group but that makes it even more important to draw together the 
limited resources. This paper aims to show how a particular software solution (WeedML) can 
help to tame the complexity of weed demography models and, in general, demonstrate how 
modern software design principles can be applied to ecological modeling. 

WeedML Design 

XML Documents. WeedML documents adheres to the rules for XML documents (e.g. Kay 
2004). Following the first line, that essentially tells which character set is used, an XML 
document consists of a hierarchy of elements: 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<animals> 
  <reptiles eggs=”yes”> 
   <snakes> 
    <cobra/> 
    <mamba/> 
   </snakes> 
  </reptiles> 
  <mammals eggs=”no”> 
   <elephant size=”big”/> 
  </mammals> 
</animals>  

The structure is laid out by start-end tags, e.g. <snakes> ... </ snakes >.  In empty elements 
the tags can be combined, e.g. <cobra/>. The outermost element (‘animals’ above) is called 
the document node; it contains all other elements in the document. An element holding other 
elements inside is called the ‘parent’ of those (called ‘children’). In the example, snakes is the 
parent of cobra and mamba. Elements can be equipped with attribute-value pairs, e.g. 
attribute ‘size’ with value ‘big’. WeedML uses no other features of XML but these. 

WeedML Documents. WeedML defines a vocabulary of valid elements and attributes and 
flexible rules for how they can be combined to describe a weed demography model. Fig. 1 
outlines a sample WeedML document.  

A model element can hold additional model elements, nested to any level, plus parameter 
elements which hold the parameter values needed by the model. The integrator element 
determines the way the simulation is carried out. Output elements tell how to present 
simulation results, e.g. on screen. Both integrator and presentation elements hold additional 
kinds of elements to specify their behavior. 

WeedML Elements.  A WeedML document must be interpreted by special software.  During 
interpretation this software turns the document into live software objects,  representing the 
elements listed in the document: models, integrator and outputs and any elements inside 
them. The document specifies the full list of elements which together and by help of the 
interpreter will carry out the desired simulation.  

One should think of software objects as entities that only live in computer memory during the 
simulation. The objects have different behavior depending on their kind, and they can interact 
by sending messages to each other. The interpreter orchestrates all this in a consistent and 
well-defined manner. The class of a model (e.g. ‘annual weed’) determines which kind of 
software object will be created and thus defines its behavior during execution. The name of a 
model simple functions as an identifier of the model.  For convenience all names are 
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interpreted without regards to case. Furthermore, spaces, hyphens and underscores are 
simply ignored. 

A WeedML document should hold one integrator element, which coordinates the execution 
of the models defined in the document. Different classes of integrators can direct execution 
to run once, or maybe several times for sensitivity analysis or stochastic simulation. WeedML 
output elements simply define which state variables should be presented in output and how. 

Element Libraries. The WeedML language was designed to be flexible and extendible. In 
itself it defines very little functionality. The functionality comes in the form of software libraries 
for model, integrator and output elements. A library defines a vocabulary of classes. A library 
of models could,  for example, define the classes: annual weed, weather, soil, etc. Each 
class is identified by a unique name inside the library.  A library defines the behavior, 
intended use and requirements for each of the classes in its vocabulary. The available 
element libraries thus set the limits for what can be formulated in a WeedML document, and 
a WeedML document only makes sense in the context of the present libraries.  

Ideally, libraries should be self-documenting, so that they can generate a list of their classes 
and a short description of their functionality and interface. The interface of a model tells (1) 
which other models it depends on, (2) which state variables it has (which other models can 
query during execution) and (3) which input variables it has (whereby other models can pass 
it information during execution). For example, a minimal weed model would  likely (1) depend 
on the presence of a weather model (which it can query daily about temperature and 
precipitation), (2) possess state variables for leaf area index, biomass and growth stage, and 
(3) accept input on imposed mortality and growth reduction caused by control treatments. 

If the vocabulary of different libraries overlap, i.e. if classes with the same name occur 
among them, names can be qualified by the library name. For example two model classes 
both named ‘competition’, but residing in two different libraries ‘Aarhus’ and ‘Wageningen’, 
can be distinguished in WeedML documents by writing ‘Aarhus::competition’ or 
‘Wageningen::competition’. 

Parameters.  Models will, depending on their class, need to know some parameter values. 
These are specified by parameter elements inside the model elements. For example, to 
define parameter ‘a’ with the value 35, you would put this element inside the model:  

<parameter name="a" value="35"/> 

The value of a parameter can be given in four different ways: 

(1) Atomic, e.g. “35” or “Paris”. 

(2) List, e.g. “(1 1 2 3 5 8)” or “((1 10)(2 50)(8 75))”. 

(3) Distribution, e.g. “$normal(avg=54.3, sd=12.42)”. 

(4) Lookup, e.g. “$lookup(../common/parameter[@name=’duration’]/@value)”. 

An atomic value is just a single value.  Lists of values are written in parentheses which can 
be nested.  A distribution of values is defined by a statistical distribution and its parameters; 
distributed values are used for stochastic modeling. A lookup value finds a value defined 
elsewhere, using the XPath language (www.w3.org).  XPath is a powerful language but 
usually only a few of its facilities are useful in WeedML. The example above  looks into the 
parent element (“..”), selects the child called ‘common’ and inside that selects the parameter 
element with an attribute called ‘duration’ and for that selects the value of the attribute called 
‘value’.  Functions are preceded by a ‘$’. 
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WeedML Reuse. Existing WeedML elements can be re-used simply by declaring that an 
element is based on another element, which can reside either in the same document or in an 
XML document elsewhere, on the local computer or on Internet. The element is looked up 
using XPath: 

<model name="Galium aparine"  
  base="doc(www.ecolmod.org/models/annual-weed-models.xml)/model[@name='galap']"> 
 
  <model class=" plant growth stage " name="flowering"  

   <model class="reproduction" > 
    <parameter name="slope" value="120"/> 
   </model> 
  </model> 
 
</model> 

We cannot tell from this of which class ‘Galium aparine’ is but we can see that it is looked up 
in an XML document residing in a folder of the www.ecolmod.org site. The value of the ‘base’  
attribute is interpreted as an XPath query, and the result of the query is copied into the 
‘Galium aparine’ element. Hence all the models and parameters found by the query will be 
filled into the ‘Galium aparine’ model.  Any models or parameters defined locally (in this case, 
the ‘slope’ parameter and the models in which it resides) will override what was filled in from 
the base model. Overriding can mean either over-writing (if models and parameters already 
existed in the base model) or expanding (if they did not exist in the base model).  

This facility, inspired by object-oriented programming, results in rich possibilities for reuse of 
whole or parts of models (Stroustrup 1997).  The other WeedML elements, integrator and 
output, can be derived from base elements in the same fashion. 

Resources.  A choice of WeedML libraries, fully functional as software building blocks, and 
software to read WeedML files and execute them in the context of those libraries can be 
downloaded from the web site: www.ecolmod.org.  The open source software (‘’Universal 
Simulator’) comes with tutorials built around example models and takes prospective users on 
a walk through their development in C++ and WeedML code. 

WeedML Elements 

This section shows by example how a WeedML document can be constructed and how 
different features of WeedML can be used to assemble models. 

Weed Model. The sample WeedML document (Fig. 1) begins with an annual weed model 
which holds three life stages (seed, juvenile and flowering)  in their natural order: 

<model class="annual weed" name="galap"> 
  <model class="seed bank"> 

  <parameter name="initial density" value="1000"/> 
  <parameter name="yearly mortality rate" value="0.1"/> 
  <parameter name="yearly emergence rate" value="0.2"/> 
   <parameter name="emergence calendar" value ="(0 5 30 60 70 50 10 0 0 0 0 0)"/> 

  </model> 
  
  <model class="plant growth stage" name="juvenile"  

  <model class=”day-degrees”> 
   <parameter name=”threshold” value=”2”/> 
  </model> 
  <parameter name="duration" value="540"/> 
 </model> 
  
 <model class=" plant growth stage " name="flowering"  
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  <model class=”day-degrees”> 
   <parameter name=”threshold” value=”4”/> 
  </model> 
  <parameter name="duration" value="110"/> 
  <model class="reproduction" > 
   <parameter name="slope" value="56"/> 
  </model> 
 </model> 

</model> 

The seed stage model has four parameters, on of which is a list of 12 numbers defining the 
relative emergence in each month. The models for juvenile and flowering plants hold 
parameters for stage duration measured in day-degrees, as defined by the ‘day-degrees’ 
models. The flowering stage in addition holds a model for reproduction.  

As already mentioned, the exact functionality of classes is not defined in the WeedML 
document but in software libraries that implement and document the classes. If WeedML 
libraries are designed sensibly they will contain classes that are easy to understand and re-
use. A minimal documentation could for example read thus: 

‘An annual weed model consists of a seed bank model followed by a sequence of plant 
growth stage models. A seed bank model has an input variable to accept new seeds and a 
state variable holding the current density. A plant growth stage model must hold a model with 
a time interface, e.g. of class day-degrees or effective-day-degrees, which will specify the 
times units of its duration, otherwise a chronological time scale will be assumed. A time 
model may need access to a weather model to inquire about the daily average temperature. 
A plant growth stage holds an input variable to accept an inflow of plant material and state 
variables to represent the current outflow rate and current density. The input and state 
variables exists in units both of individuals and biomass. A plant growth stage can hold a 
seed production model, which holds a state variable for the current rate of seed production.’ 

Weather Model. For the service of other models, a weather model must be specified: 

<model class="weather file" name=”weather”> 
  <parameter name="file name" value="paris 2001.txt"/> 
  <parameter name="column date" value="1"/> 
  <parameter name="column avg temp" value="2"/> 
  <parameter name="column min temp" value ="3"/> 
  <parameter name="column max temp" value ="5"/> 
  <parameter name="column total irradiation" value ="7"/> 
</model> 

In this example daily weather is provided from a weather log file, in which climatic variables 
are available from the designated columns. Alternative weather models could hold a constant 
environment or contain whole weather generators. Notice that, in any case, the weather 
model would be equipped with the same minimum set of state variables, representing the 
current values of the climatic variables. In other words, all these different classes would 
conform to the same interface, and other models in the WeedML document would be 
ignorant about which specific class of weather model were in effect. 

External Crop Model. Many crop models already exist which could  be re-implemented as 
WeedML models. Here we will not present any particular model but instead assume it 
already exists and can simply be re-used: 

<model name="winter wheat"  
base="doc(www.ecolmod.org/models/simple-crop-models.xml)/model[@name='winter wheat']"> 

</model> 
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Competition Model. A competition model is an example of a model that coordinates the 
interaction between other models, in this case crop and weed models. Here we will use the 
recursive density equivalents model of competition, suggested by Holst (2005): 

<model class="recursive density equivalents competition"> 
  <parameter name=”ai” value=”((winter-wheat galap 80 0.6) (winter-wheat cheal 35 0.4))”/> 

</model> 

A parameter list defines the hyperbolic coefficients (a and i) of Cousens  (1985) for each 
crop-weed interaction.  

WeedML Integrator. A WeedML document comes to life when it is read by a WeedML 
interpreter. This software must first read the WeedML code and resolve all internal and 
external references. Then all elements must be represented internally in software, most 
simple by creation of one software object for each WeedML element. These objects must be 
equipped with the needed references to each other (e.g., from competition model to 
competitors) and they must be set to a well-defined initial state. The state of an object will be 
held by state variables as needed for the object’s functionality. The initial value of state 
variables can either have some natural value (often zero) or be specified by WeedML 
parameters.  

Finally, the model can be executed (‘run’) in a loop  that step by step updates all state 
variables of all objects constituting the model. Often a time step of one day is natural and 
yields a reasonable short execution time. For every time step,  the increment or decrement of 
all state variables (i.e., the rates of change) are, mathematically ideally, calculated before the 
state variables are actually changed. To make this possible, however, certain mathematical 
constraints would have to be imposed on the function of WeedML models.  A typical problem 
would be to ensure that several loss rates did not add up to a greater loss than what is 
present. 

Therefore, to give the developers of WeedML greater flexibility, at the loss of mathematical 
precision, the execution of WeedML models is based upon a sequence of calculations for 
every time step, in which it is allowed to change the value of state variables before all rates 
of change have been calculated. To keep model behavior well-defined, a certain order of 
calculation must then be defined. This sequence of calculation is defined in the WeedML 
integrator element: 

< integrator class="single run">   
  <parameter name="duration" value="365"/> 
  <sequence> 
   <model name="weather"/> 
   <model name="winter wheat"/> 
   <model class="annual weed"/>             
  </sequence> 
</ integrator > 

Here, in every time step, the models are updated in the order of (1) models named ‘weather’, 
(2) models named ‘winter wheat’, and (3) models of class ‘annual weed’. Most often there will 
be a natural sequence of calculations, e.g. the climatic variables are updated before the 
models using them. Parent models will update their children in a recursive fashion, e.g. the 
child and grandchild models inside the annual weed models. 

Integrators can have more or less complicated behavior depending on their class, e.g. to 
perform  sensitivity analysis or stochastic simulation, but in this example the model is just run 
once for 365 days. The classes of integrators available depends on which are offered in the 
present integrator libraries. 
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WeedML Output. The results of the simulation can be shown as output of state variables, 
either as plots on screen or as tables in text files. The example show how to define a plot on 
screen: 

<output class="plot"> 
  <parameter name=”title” value="Crop leaf area index"/> 
  <variable axis=”x” label="Date" value="calendar[date]" /> 
  <variable axis=”y” label="Temp (oC)" value="weather[avg temperature]"/> 
  <variable axis=”y” label="Crop LAI" value="winter wheat[lai]"/> 
 </output> 

This will produce one plot on the screen with calendar date on the x-axis and two curves: one 
for temperature and one for crop leaf area index. State variables are specified by a model 
name followed by the state variable name in brackets. Which state variables a model offers 
depends on its class. A list of state variables for all model classes should therefore be a part 
of the documentation for any WeedML library. 

Discussion 

WeedML is based on a few generic building blocks, yet is expressive enough to formulate 
complex models of weed demography. By facilitating re-use of models in a modular fashion, 
WeedML enables modelers to concentrate on the system components of particular interest; 
models for the remaining parts of the system can simply be borrowed from other modelers 
with other interests and focus.  

WeedML was developed as a tool to model weed demography but looking back at the 
finished design, it is obviously as well suited also to model other complex systems. This 
universality is facilitated by the openness that the library system gives: any models or output 
options, or alternative methods of integration, can be added as new libraries. The open 
library structure is also a possible vulnerability. WeedML comes with only a limited set of 
models in its libraries and will only be of general utility, if modelers will enrich the first proof-
of-concept libraries with new ones to extend the selection of available models. Reflecting 
upon the expressiveness of WeedML it was decided to call the accompanying software 
‘Universal Simulator’ and, indeed, libraries already exist for modeling insects as well as 
weeds (www.ecolmod.org). 

So, is WeedML the right tool for any model of weed demography? Certainly most benefits will 
be reaped from WeedML, if the model is complex and maybe developed by a larger team. 
For small models, or models that can be formulated rigorously as a system of differential 
equations or Leslie matrices, other software tools are better suited. Such classical 
mathematical models can easily be constructed with these tools, which moreover offer plenty 
of options to analyze the models analytically through mathematical inference. But if one 
wants to encourage the re-use of even the simplest model, a WeedML version would 
increase the chance of its more widespread use. 

When ecological models become complex, and models of weed demography easily do, the 
construction of their software representation becomes a genuine software development 
project. In most cases, modelers seem ignorant, knowingly or not, that they are crossing the 
border to another science, namely that of software engineering. Maybe this dawns on them, 
e.g. when they have finished their one crop-one weed model and want to extend this to a 
crop rotation-many weed species model: the complexity of the software itself becomes 
unmanageable, even though their idea of the model stands clear in their mind and is easily 
explained. WeedML will certainly be a help in such cases because in WeedML, the modeler 
can more easily focus on the programming of individual sub-models, one at a time.  
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It is interesting to compare the design of WeedML with that of two other modeling tools for 
biology: HERMES (Larkin and Carruthers 1989;Larkin et al. 2000) and SBML  (Hucka et al. 
2003). HERMES is a fully-integrated, visual modeling tool. Models and parameter values are 
all defined with the visual design tool, and additional model building blocks can be 
programmed in the Smalltalk language. HERMES does not seem in widespread use. SBML 
is a pure XML standard. Models are specified as differential equations  and written out in 
XML documents down to the detail of equations and parameter values. SBML is highly 
successful with a plethora of software available to construct and analyze SBML models.  

Both HERMES and SBML models run as interpreted code. WeedML takes another 
approach: it is a language that specifies how compiled building blocks (models, integrator 
and outputs) are put together to be executed as one coherent model. The Universal 
Simulator software (www.ecolmod.org) that accompanies this paper was programmed in C++ 
using the plug-in facility of the Qt framework (www.qtsoftware.com) to implement the lose 
coupling of building blocks supplied as dynamic-link libraries. Although WeedML tools could 
be implemented in any language, the most straightforward way of creating new libraries for 
WeedML will certainly be to use the same toolset, neatly integrated in the free tool Qt Creator 
(www.qtsoftware.com).  

The WeedML development method is first to create the needed building blocks (i.e. WeedML 
models), using e.g. Qt Creator and the framework of WeedML base classes found at 
www.ecolmod.org. These models must be small, well-formed pieces of functionality with 
clear interfaces to other models. Thereby WeedML encourages good software design (Martin 
2006). Once the models have been implemented in a library they are assembled to form the 
full model. This two-stage process helps managing the complexity of models with many 
interacting parts: one can add more weed species or more crops to the rotation without 
losing oversight of model functionality. Or a simply model of e.g. weed emergence can be 
replaced with a more complicated one without the fear of unwanted side effects in other 
models.  

The spirit of WeedML is open source software and the Universal Simulator 
(www.ecolmod.org) indeed is open source. When WeedML models developed by one 
modeler is re-used by another, it will be necessary to study the source code of that model, if 
one wishes to understand how it works in detail. Such detailed knowledge will be necessary 
if the borrowed model is to collaborate intimately with some new model under construction. 
But this requirement is not unique to WeedML, it is a necessity for any complex simulation 
model that claims to be a valid scientific contribution. If the source code is not available for 
scrutiny, scientists from outside will have to trust that the modeling team truthfully 
implemented the model as described in the scientific paper, and that it did not make any 
errors when coding the model into software.  

Laying model code out in the open invites both re-use, through standards such as WeedML, 
and communal inspection and debugging of the code.  In this, open source models are like 
scientific papers, which also are put forward boldly to be cited, used and possibly corrected 
or falsified. An important difference between models and papers is that the former are soft: 
they can be reformulated and extended ad infinitum. It is the experience of the open-source 
community that this process leads to increased usability of the software rather than its 
detriment (e.g. Fogel 2003).  

WeedML is an attempt to create a standard that will ease collaboration between weed 
modelers. The success of this approach will depend on the interest of the weed science 
community, in terms of using WeedML in its current form and in developing it further in terms 
of software tools and additional WeedML libraries.  Should WeedML end up not as a success 
in itself but as source of inspiration for a better design of weed demographic models, or 
ecological models in general, that would still be a significant achievement. 
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<?xml version="1.0" encoding="ISO-8859-1"?> 
<weedml version="1.0"> 
  <model class="annual weed" name="galap"> ... </model> 
  <model class="annual weed" name="cheal"> ... </model> 
  <model class="weather" > ... </model> 
  <model name="winter wheat" base =”...”> ... </model> 
  <model class="recursive density equivalents competition"> ... </model> 
  < integrator class="single run">  ... </ integrator > 
  <output class="screen"> ... </output> 
</weedml> 

Fig. 1. In a WeedML document, the document node can hold three kinds of elements in any 
order: model, integrator and output. They all have three optional attributes: class, name and 
base. Element contents (abbreviated '...') are exemplified in text. 

 

 


